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Outline
•Processing collection of data using lists

• List creation and manipulation

•Various operations on lists
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Storing Collection of Data
•Python provides many built-in data types to store a group 

of data
◦ list – an ordered collection of objects

◦ tuple – immutable version of list

◦ dict – a collection of key-value mapping

◦ set – an unordered collection of distinct objects

•And a lot more in the standard collections module

• This course will focus only on list



4

Quick Task: Find Average
• Find the average score of students.

24

3226

28

Enter student score (or ENTER to finish): 24
Enter student score (or ENTER to finish): 26
Enter student score (or ENTER to finish): 28
Enter student score (or ENTER to finish): 32
Enter student score (or ENTER to finish):
Average score is 27.5
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Find Average – Solution
• This should be straightforward

sum = 0
count = 0
while True:

ans = input("Enter student score (or ENTER to finish): ")
if ans == "":

break
score = float(ans)
sum = sum + score
count = count + 1

avg = sum/count
print(f"Average score is {avg}")
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Task: Find Below Average
• Similar to Find Average, but also list the scores that are 

below the average
Enter student score (or ENTER to finish): 24
Enter student score (or ENTER to finish): 26
Enter student score (or ENTER to finish): 28
Enter student score (or ENTER to finish): 32
Enter student score (or ENTER to finish):
Average score is 27.5
Scores below average:
24
26

24

3226

28
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Find Below Average – Ideas
•We need to keep track of every single score

•Declaring one variable for one score is very inflexible

s1 = float(input("Enter student score: "))
s2 = float(input("Enter student score: "))
s3 = float(input("Enter student score: "))

:

We cannot even 
control how 

many times to 
read scores
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Storing a list of data
•Python provides the list data type to store a list of 

objects

scores = []
while True:

score = input("Enter score (or ENTER to finish): ")
if score == "":

break
score = int(score)
scores.append(score)

print("Scores are:", scores) Enter score (or ENTER to finish): 24
Enter score (or ENTER to finish): 26
Enter score (or ENTER to finish): 28
Enter score (or ENTER to finish): 32
Enter score (or ENTER to finish):
Scores are: [24, 26, 28, 32]

Create an empty list

Append a new element
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List Creation
• Create an empty list

• Create a list containing 4 integers: 20, 12, 8, 6

• Create a list containing 3 floats: 1.2, 3.1, 8.0

• Create a list containing 2 strings: "Hello", "Goodbye"

• Create a list with mixed data types

list1 = []

list2 = [20, 12, 8, 6]

list3 = [1.2, 3.1, 8.0]

list4 = ["Hello", "Goodbye"]

list5 = ["Hello", 9, 3.8]
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List Member Access
•Members in a list can be accessed using the [] operator 

with an index (similar to strings)

•Reminder: index starts from 0

>>> lst = [8,3,2,5,3,1,6]

>>> lst[0]

8

>>> lst[1]

3

>>> lst[-1]

6
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Lists Are Mutable
•Unlike strings, list's contents can be changed

•A new element can be added using the list.append()
method (a method is a function bound to an object)

>>> lst = [8,3,9,5,3,1,6]

>>> lst

[8, 3, 9, 5, 3, 1, 6]

>>> lst[2] = 38

>>> lst

[8, 3, 38, 5, 3, 1, 6]

>>> lst

[8, 3, 38, 5, 3, 1, 6]

>>> lst.append(72)

>>> lst

[8, 3, 38, 5, 3, 1, 6, 72] PythonTutor

http://pythontutor.com/visualize.html#code=L%20%3D%20%5B1,2,3%5D%0AL.append%2810%29%0AL.append%2825%29%0AL.append%2830%29&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
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List's Length and List Traversal
• The function len() returns the length of a list

•A list can be used as a sequence of a for loop

>>> lst = [8,3,2,5,3,1,6]

>>> len(lst)

7

>>> for x in lst:

... print(x)

8

3

2

5

3

1

6
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Task Revisited: Find Below Average

• Let us get back to the task

Enter student score (or ENTER to finish): 24
Enter student score (or ENTER to finish): 26
Enter student score (or ENTER to finish): 28
Enter student score (or ENTER to finish): 32
Enter student score (or ENTER to finish):
Average score is 27.5
Scores below average:
24
26

24

3226

28
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Find Below Average – Ideas
•We will divide the task into smaller subtasks
◦ read_scores() – reads and returns scores as a list

◦ compute_average(scores) – computes the average from a list 
of scores

◦ print_below(scores,value) – prints only scores that are 
below the given value

•We will then write a subroutine for each of these subtasks
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Find Below Average – Steps
•Main program

scores  read all scores

average  average of scores

print all values in scores
that are below average

display average

START

END
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Find Below Average – Steps
•read_scores() subroutine

read all scores

scores  empty list

more 
score?

append score to scores

return scores

Yes

No



17

Find Below Average – Steps
•compute_average(scores) subroutine

compute average 
of scores

total  sum of all scores

count  number of scores

average  total/count

return average
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Find Below Average – Steps
•print_below(scores,value) subroutine

print all values in scores
that are below value

read next score from scores

return
more item 
in scores?

score less 
than value?

print score

Yes

No

Yes

No
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Find Below Average – Subroutines

def print_below(scores,value):
for s in scores:

if s < value:
print(s)

def compute_average(scores):
sum = 0
for s in scores:

sum = sum + s
return sum/len(scores)

def read_scores():
scores = []
while True:

ans = input("Enter student score (or ENTER to finish): ")
if ans == "":

break
scores.append(int(ans))

return scores

read all scores

compute average 
of scores

print all values in scores
that are below value
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Built-in Function: sum()
• sum(lst) returns the summation of all the items in the list lst

• Therefore, compute_average() can be rewritten as

>>> sum([1,2,3,4])

10

>>> sum([10,50,21,27])

108

>>> sum(range(101))

5050

def compute_average(scores):
sum = 0
for s in scores:

sum = sum + s
return sum/len(scores)

def compute_average(scores):
return sum(scores)/len(scores)
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Find Below Average – Testing
•Once we have defined all subroutines, let us test them one 

by one

• Testing read_scores()

>>> scores = read_scores()

Enter student score (or ENTER to finish): 28

Enter student score (or ENTER to finish): 26

Enter student score (or ENTER to finish): 32

Enter student score (or ENTER to finish): 37

Enter student score (or ENTER to finish): 

>>> scores

[28.0, 26.0, 32.0, 37.0]

def read_scores():
scores = []
while True:

ans = input("Enter student score...")
if ans == "":

break
scores.append(int(ans))

return scores
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Find Below Average – Testing
• Testing compute_average()

>>> compute_average([1])

1.0

>>> compute_average([1,2])

1.5

>>> compute_average([1,2,3])

2.0

>>> compute_average([1.2,4.6,5.1])

3.633333333333333

def compute_average(scores):
return sum(scores)/len(scores)
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Find Below Average – Testing
• Testing print_below()

>>> print_below([6,2,4,8,1,2],3)

2

1

2

>>> print_below([6,2,4,8,1,2],4.5)

2

4

1

2

>>> print_below([6,2,4,8,1,2],6)

2

4

1

2

def print_below(scores,value):
for s in scores:

if s < value:
print(s)
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Find Below Average – Main
•Once we have tested all subroutines, let us write the main 

program

scores = read_scores()
avg = compute_average(scores)
print(f"Average score is {avg}")
print("Scores below average:")
print_below(scores,avg)
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Finding Min and Max
• In addition to sum(), Python also provides min() and 
max() functions
◦ min(lst) returns the minimum value in the list lst

◦ max(lst) returns the maximum value in the list lst

>>> nums = [6,2,4,8,1,2]

>>> min(nums)

1

>>> max(nums)

8
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Task: Score Statistics
•Read a list of scores and report the summary table, along 

with average, minimum, and maximum scores

Enter student score (or ENTER to finish): 24
Enter student score (or ENTER to finish): 26
Enter student score (or ENTER to finish): 28
Enter student score (or ENTER to finish): 32
Enter student score (or ENTER to finish): 
Student #1 score: 24
Student #2 score: 26
Student #3 score: 28
Student #4 score: 32
Average score is 27.5
Minimum score is 24
Maximum score is 32

24

3226

28
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Score Statistics – Ideas
•Most subroutines from the previous example can be 

reused (read_scores, compute_average)

•Min and max can be computed using the built-in functions

• The only challenge is the summary table part

scores = read_scores()
show_score_summary(scores)
avg_score = compute_average(scores)
min_score = min(scores)
max_score = max(scores)
print(f"Average score is {avg_score}")
print(f"Minimum score is {min_score}")
print(f"Maximum score is {max_score}")
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Score Statistics – Ideas
• The summary needs to display the order of each student's 

score

•A for loop with a combination of len() and range()
can help

Enter student score (or ENTER to finish): 24
Enter student score (or ENTER to finish): 26
Enter student score (or ENTER to finish): 28
Enter student score (or ENTER to finish): 32
Enter student score (or ENTER to finish): 
Student #1 score: 24
Student #2 score: 26
Student #3 score: 28
Student #4 score: 32
Average score is 27.5
Minimum score is 24
Maximum score is 32
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Score Statistics – Program
•Only the show_score_summary() function is shown 

here

• Let's test it

def show_score_summary(scores):
for i in range(len(scores)):

print(f"Student #{i+1} score: {scores[i]}")

>>> show_score_summary([31,56,73,48])

Student #1 score: 31

Student #2 score: 56

Student #3 score: 73

Student #4 score: 48
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List vs. String
• Lists and strings share many similarity
◦ Member access with []

◦ The len() function

◦ Their use with for loop

• The main difference is lists are mutable but strings are 
immutable

>>> s = "Hello"

>>> s[3] = "c"

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

>>> L = [1,2,3,4,5]

>>> L[3] = 8

>>> L

[1, 2, 3, 8, 5]
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Caveats – Lists are mutable
•Assigning two or more names to the same list may have 

undesired effect

• To make a copy of a list, use list() function instead

>>> nums1 = [1,2,4,8]

>>> nums2 = nums1

>>> nums2[2] = 20

>>> nums1

[1, 2, 20, 8]

>>> nums1 = [1,2,4,8]

>>> nums2 = list(nums1)

>>> nums2[2] = 20

>>> nums1

[1, 2, 4, 8]

>>> nums2

[1, 2, 20, 8]

1 2 4 8nums1

nums2

20

1 2 4 8

nums1

nums2 20

1 2 4 8

PythonTutor

PythonTutor

http://pythontutor.com/visualize.html#code=nums1%20%3D%20%5B1,2,4,8%5D%0Anums2%20%3D%20list%28nums1%29%0Anums2%5B2%5D%20%3D%2020&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
http://pythontutor.com/visualize.html#code=nums1%20%3D%20%5B1,2,4,8%5D%0Anums2%20%3D%20nums1%0Anums2%5B2%5D%20%3D%2020&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
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Bonus – Membership Test
•Using the in operator

• The in operator also works with strings

>>> numbers = [5,1,8,2,7]

>>> 5 in numbers

True

>>> 9 in numbers

False

>>> s = "Hello"

>>> "e" in s

True

>>> "L" in s

False

>>> "lo" in s

True

This is a Boolean expression
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Membership Test – Example
• The following code counts the number of vowels (a,e,i,o,u) 

in the given text

text = input("Enter a text: ")
count = 0
for c in text:

if c in "AEIOUaeiou":
count = count + 1

print(f"Found {count} vowel(s)")

Enter a text: Hello

Found 2 vowel(s)

Enter a text: Good morning

Found 4 vowel(s)
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Bonus – List Slicing
• Slicing creates a new list as a subset of an existing list

• Slicing syntax for a list L:

• The newly created list is:

[L[start],L[start+step],L[start+2step],…]

◦ The last member DOES NOT include L[stop]
◦ start can be omitted, implying 0
◦ stop can be omitted, implying list's length
◦ step can be omitted, implying 1

L(start:stop:step)
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Examples – List Slicing

>>> L = [1,4,9,16,25,36,49]

>>> L[2:4]

[9, 16]

>>> L[1:]

[4, 9, 16, 25, 36, 49]

>>> L[:5]

[1, 4, 9, 16, 25]

>>> L[1:6:2]

[4, 16, 36]

>>> L[::-1]

[49, 36, 25, 16, 9, 4, 1]

>>> L[:]

[1, 4, 9, 16, 25, 36, 49]

Specifying start and stop

Specifying only start

Specifying only stop

Specifying start, stop, and step

Specifying nothing (copying list)

Specifying a negative step
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Example – List Slicing
• The following code slices a list of month names into four 

quarters

months = [
'Jan','Feb','Mar','Apr','May','Jun',
'Jul','Aug','Sep','Oct','Nov','Dec'

]

q1 = months[0:3]
q2 = months[3:6]
q3 = months[6:9]
q4 = months[9:12]

print("Quarter 1:", q1)
print("Quarter 2:", q2)
print("Quarter 3:", q3)
print("Quarter 4:", q4)

Quarter 1: ['Jan', 'Feb', 'Mar']

Quarter 2: ['Apr', 'May', 'Jun']

Quarter 3: ['Jul', 'Aug', 'Sep']

Quarter 4: ['Oct', 'Nov', 'Dec']
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Conclusion

•A list is used to store ordered collection of values as one 
single object

• List members can be added and changed at any time

•A for loop can be used to iterate over each member

•len(), sum(), min(), and max() are some built-in 
functions that work with lists

• Lists are quite similar to strings, except that lists are 
mutable but strings are immutable
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References
•Python data structures:
◦ https://docs.python.org/3/tutorial/datastructures.html

•Common sequence operations
◦ https://docs.python.org/3/library/stdtypes.html#sequence-types-

list-tuple-range

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
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Syntax Summary (1)
•Creating a list

•Accessing the member at ith position (starting at 0)

•Appending a new member at the end of the list

• Finding the list's length

L = [member0,member1,...]

L[i]

L.append(new_member)

len(L)



40

Syntax Summary (2)
• Finding the sum, minimum, and maximum of all members 

in the list (numerical members only)

• Traversing list's members

sum(L) min(L) max(L)

for member in L:
...
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Syntax Summary (bonus)
•Checking whether value is in the list

•Create a slicing of the list

◦ start, stop, and step are all optional

value in L

L[start:stop:step]


