Collection: Lists

Python Programming Fundamental

Husni

Department of Informatics Engineering
University of Trunojoyo Madura

QOutline

* Processing collection of data using lists

* List creation and manipulation

*Various operations on lists

_eale}
Storing Collection of Data ek

* Python provides many built-in data types to store a group
of data
o 1ist —an ordered collection of objects
° tuple —immutable version of 1ist
> dict —a collection of key-value mapping
o set —an unordered collection of distinct objects

* And a lot more in the standard collections module

* This course will focus onlyon 1ist

Quick Task: Find Average @

* Find the average score of students.

Enter student ENTER to finish):
Enter student ENTER to finish):
Enter student ENTER to finish):
Enter student ENTER to finish):
Enter student ENTER to finish):
Average score

01010010
1110101

Find Average — Solution

* This should be straightforward

__

Ecount = 0
‘while True: |
| ans = input("Enter student score (or ENTER to finish): ")E
if ans == "": |
break
score = float(ans)
sum = sum + score
count = count + 1

Eavg = sum/count
' print(f"Average score is {avg}")

Task: Find Below Average

&

Similar to Find Average, but also list the scores that are

below the average

Enter
Enter
Enter
Enter
Enter

student
student
student
student
student

Average score
Scores below average:

pr
26

score
score
score
score
score

is 27.

(or
(or
(or
(or
(or
)

ENTER to
ENTER to
ENTER to
ENTER to
ENTER to

finish):
finish):
finish):
finish):
finish):

Find Below Average — Ideas)

* We need to keep track of every single score

* Declaring one variable for one score is very inflexible
's1 = float(input("Enter student score: "))
's2 = float(input("Enter student score: "))
's3 = float(input("Enter student score: "))

We cannot even
control how
many times to

read scores

Storing a list of data Tep”

* Python provides the 11st data type to store a list of
objects

Escores = []
' while True
; score = input("Enter score (or ENTER to finish): ")
if score == ""
break

score = int(score) Append a new element
scores.append(score)

Eprint("SCOPeS are:", scores) EINTaEEITIN (or ENTER to finish):
T Enter score (or ENTER to finish):
Enter score (or ENTER to finish):

Enter score (or ENTER to finish):
Enter score (or ENTER to finish):
Scores are: [24, 26, 28, 32]

_ealed
List Creation wy

* Create an empty list

List Member Access

Members in a list can be accessed using the [| operator
with an index (similar to strings)

lst = [8,3,2,5,3,1,6]
1st[0]

1st[1]

1st[-1]

Reminder: index starts from O

Lists Are Mutable

Unlike strings, list's contents can be changed

lst = [8,3,9,5,3,1,6

[8) 3) 9) 5.' 3) 1) 6]

1st[2] = 38
1st
[8, 3, 38, 5, 3, 1, 6]

A new element can be added using the 1ist.append()
method (a method is a function bound to an object)

1st
[8, 3, 38, 5, 3, 1, 6]

1st.append(72
1st
[8, 3, 38, 5, 3, 1, 6, 72] PythonTutor

http://pythontutor.com/visualize.html#code=L%20%3D%20%5B1,2,3%5D%0AL.append%2810%29%0AL.append%2825%29%0AL.append%2830%29&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

List's Length and List Traversal

The function 1len() returns the length of a list

A list can be used as a sequence of a for loop

lst = [8,3,2,5,3,1,6
len(1st)

for x in l1st:

print(x)

Task Revisited: Find Below Average @

Let us get back to the task

Enter student score (or ENTER to finish):
Enter student score (or ENTER to finish):
Enter student score (or ENTER to finish):
Enter student score (or ENTER to finish):
Enter student score (or ENTER to finish):
Average score is 27.5

Scores below average:

24

26

Find Below Average — Ildeas _

* We will divide the task into smaller subtasks
> read_scores() —reads and returns scores as a list

o compute average(scores) —computes the average from a list
of scores

cprint_below(scores,value) — prints only scores that are
below the given value

* We will then write a subroutine for each of these subtasks

Find Below Average — Steps @

* Main program ”

scores €« read all scores

'

average < average of scores

/sy e/

print all values in scores
that are below average

(o)

Find Below Average — Steps @

*read_scores() subroutine

read all scores

Find Below Average — Steps @

e compute average(scores) subroutine

compute average
of scores

Find Below Average — Steps @

*print below(scores,value) subroutine

print all values in scores
that are below value

01010010

Find Below Average — Subroutines

read all scores

' def read_scores():
' scores = []
while True:
ans = input("Enter student score (or ENTER to finish): ")
if ans == "":
break
scores.append(int(ans))
return scores

compute average
of scores

' def compute_average(scores):
| sum = 0 |
for s in scores:

sum = sum + S
return sum/len(scores)

print all values in scores
that are below value

' def print_below(scores,value):
| for s in scores:
if s < value:
print(s)

Built-in Function: sum()

sum(1lst) returns the summation of all the items in the list 1st

sum([1,2,3,4])

10

sum([10,50,21,27])
108

sum(range(101))
5050

Therefore, compute _average() can be rewritten as

. def compute_average(scores):

sum = 0 |
P) :[$> ' def compute_average(scores):
or s in scores: :
- return sum(scores)/len(scores)

__

sum = sum + S
return sum/len(scores)

Find Below Average — Testing N

Once we have defined all subroutines, let us test them one

by one def read_scores():

scores = []
while True:

TeSting Pead_SCOPeS() ans = input("Enter student score...")

if ans == ""
break
scores.append(int(ans))

scores = read scores return scores
Enter student score (or ENTER to finish):
Enter student score (or ENTER to finish):
Enter student score (or ENTER to finish):
Enter student score (or ENTER to finish):
Enter student score (or ENTER to finish):

scores
[28.0, 26.0, 32.0, 37.0]

Find Below Average — Testing N/

Testing compute average()

' def compute_average(scores): ,
return sum(scores)/len(scores) |

compute average(|1
1.0
compute average(|1,2
1.5
compute average(|1,2,3
2.0
compute average(|1.2,4.6,5.1
3.633333333333333

Find Below Average — Testing N

Testing pr‘int_below() ' def print_below(scores,value):
' for s in scores: !

print below([6,2,4,8,1,2],3) e T

print below([6,2,4,8,1,2],4.5)

print below([6,2,4,8,1,21,6)

Find Below Average — Main

* Once we have tested all subroutines, let us write the main
program

Escores = read_scores()

'avg = compute_average(scores)
print(f"Average score is {avg}")
print("Scores below average:")
print_below(scores,avg)

Finding Min and Max

In addition to sum(), Python also provides min() and
max () functions
min(1lst) returns the minimum value in the list 1st
max(1lst) returns the maximum value in the list 1st

nums = |6,2,4,8,1,2
min(nums)

max(nums)

Task: Score Statistics <?>

Read a list of scores and report the summary table, along
with average, minimum, and maximum scores

Enter student score (or finish):
Enter student score (or finish):
Enter student score (or finish):
Enter student score (or finish):
Enter student score (or finish):
Student #1 score: 24
Student #2 score: 26
Student #3 score: 28

o] 5] g N
N |00 o |

Student #4 score: 32
Average score is 27.5
Minimum score is 24
Maximum score is 32

Score Statistics — Ideas

* Most subroutines from the previous example can be
reused (read _scores, compute_ average)

* Min and max can be computed using the built-in functions

*The only challenge is the summary table part

'scores = read_scores()

. show_score_summary(scores)

avg_score = compute_average(scores)
‘min_score = min(scores)

‘max_score = max(scores)

. print(f"Average score is {avg_score}")
print(f"Minimum score is {min_score}")
print(f"Maximum score is {max_score}")

Score Statistics — Ideas

* The summary needs to display the order of each student's
score

Enter student score (or ENTER to finish):
Enter student score (or ENTER to finish):
Enter student score (or ENTER to finish):
Enter student score (or ENTER to finish):
Entonsctudonteosona=lior ENTER to finish):
Student #1 score: 24

Student #2 score: 26
Student #3 score: 28
Student #4 score: 32
Average score 1s 2/.5
Minimum score is 24
Maximum score is 32

* A for loop with a combination of 1en() and range()
can help

Score Statistics — Program

Only the show score_summary () function is shown
here

for i in range(len(scores))
print(f"Student #{i+1} score: {scores[i]}")

Let's test it

show score summary([31,56,73,48])
Student #1 score: 31
Student #2 score: 56
Student #3 score: 73

Student #4 score:

List vs. String 9,

* Lists and strings share many similarity
> Member access with []
> The 1len () function
> Their use with for loop

* The main difference is lists are mutable but strings are
immutable

L =11,2,3,4,5] s = "Hello"
L[3] = 8 s[3] = "c"
L

[1, 2, 3, 8, 5]

Caveats — Lists are mutable A

* Assigning two or more names to the same list may have
undesired effect

nums1 = [1,2,4,8] nums 1 172 208

nums2 = numsl ‘//’
nums2|2| = 20 nums 2

numsl
[1, 2, 20, 8]

PythonTutor

* To make a copy of a list, use 1ist () function instead
numsl = [1,2,4,8]

nums2 = list(numsl)
nums2[2] = 20 nums1

nums1

nums?2

[1, 2, 20, 8]

PythonTutor

http://pythontutor.com/visualize.html#code=nums1%20%3D%20%5B1,2,4,8%5D%0Anums2%20%3D%20list%28nums1%29%0Anums2%5B2%5D%20%3D%2020&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
http://pythontutor.com/visualize.html#code=nums1%20%3D%20%5B1,2,4,8%5D%0Anums2%20%3D%20nums1%0Anums2%5B2%5D%20%3D%2020&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false

Bonus — Membership Test &)

Using the 1n operator

numbers = [5,1,8,2,7

5 in numbers
True

9 in numbers
False

This is a Boolean expression

The 1n operator also works with strings

Membership Test — Example

* The following code counts the number of vowels (a,e,i,o,u)
in the given text

text = input("Enter a text: ")
Ecount = 0

for c in text

' if ¢ in "AEIOUaeiou"

| count = count + 1

' print(f"Found {count} vowel(s)")

Enter a text: Hello
Found 2 vowel(s)

Enter a text: Good morning
Found 4 vowel(s)

Bonus — List Slicing 9,

* Slicing creates a new list as a subset of an existing list

* Slicing syntax for a list L:

* The newly created list is:
[L[start],L[start+step],L[start+2step],..]

> The last member DOES NOT include L[stop]
o start can be omitted, implying O

o stop can be omitted, implying list's length

o step can be omitted, implying 1

Examples — List Slicing

L [1,4,9,16,25,36,49]

[9, 16] Specifying start and stop

: Specifying only start
[4, 9, 16, 25, 36, 49]

: Specifying only stop
[1, 4, 9, 16, 25]

L[1:6:2] Specifying start, stop, and step
[4, 16, 36]

L[::-1 Specifying a negative step
[49, 36, 25, 16, 9, 4, 1

: Specifying nothing (copying list)
[1, 4, 9, 16, 25, 36, 49]

Example — List Slicing

* The following code slices a list of month names into four
quarters

Emonths = [
' "Jan', 'Feb', '"Mar', 'Apr', ‘May', 'Jun’',
"Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'

' ql = months[0:3]

' g2 = months[3:6]

' g3 = months[6:9]

' g4 = months[9:12]

;pr%nt("Quarter 1:", ql) P
. print("Quarter 2:", q2)

_print("Quarter 3:", g3) Quarter
 print("Quarter 4:", q4) Quarter

O, Quarter

Conclusion

* A list is used to store ordered collection of values as one
single object

* List members can be added and changed at any time
* A for loop can be used to iterate over each member

*len(), sum(),min(), and max() are some built-in
functions that work with lists

* Lists are quite similar to strings, except that lists are
mutable but strings are immutable

References

* Python data structures:
o https://docs.python.org/3/tutorial/datastructures.html

* Common sequence operations

o https://docs.python.org/3/library/stdtypes.html#tsequence-types-
list-tuple-range

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

eale’
Syntax Summary (1) Y

. Creatmg a list

__

__

__

__

__

__

__

__

wal6?
Syntax Summary (2) %

* Finding the sum, minimum, and maximum of all members
in the list (numerlcal members only)

Syntax Summary (bonus) ey

* Checking whether value is in the list

__

__

o start, stop, and step are all optional

