
Collection: Lists

Husni

Department of Informatics Engineering
University of Trunojoyo Madura

Python Programming Fundamental 



2

Outline
•Processing collection of data using lists

• List creation and manipulation

•Various operations on lists



3

Storing Collection of Data
•Python provides many built-in data types to store a group 

of data
◦ list – an ordered collection of objects

◦ tuple – immutable version of list

◦ dict – a collection of key-value mapping

◦ set – an unordered collection of distinct objects

•And a lot more in the standard collections module

• This course will focus only on list



4

Quick Task: Find Average
• Find the average score of students.

24

3226

28

Enter student score (or ENTER to finish): 24
Enter student score (or ENTER to finish): 26
Enter student score (or ENTER to finish): 28
Enter student score (or ENTER to finish): 32
Enter student score (or ENTER to finish):
Average score is 27.5



5

Find Average – Solution
• This should be straightforward

sum = 0
count = 0
while True:

ans = input("Enter student score (or ENTER to finish): ")
if ans == "":

break
score = float(ans)
sum = sum + score
count = count + 1

avg = sum/count
print(f"Average score is {avg}")



6

Task: Find Below Average
• Similar to Find Average, but also list the scores that are 

below the average
Enter student score (or ENTER to finish): 24
Enter student score (or ENTER to finish): 26
Enter student score (or ENTER to finish): 28
Enter student score (or ENTER to finish): 32
Enter student score (or ENTER to finish):
Average score is 27.5
Scores below average:
24
26

24

3226

28



7

Find Below Average – Ideas
•We need to keep track of every single score

•Declaring one variable for one score is very inflexible

s1 = float(input("Enter student score: "))
s2 = float(input("Enter student score: "))
s3 = float(input("Enter student score: "))

:

We cannot even 
control how 

many times to 
read scores



8

Storing a list of data
•Python provides the list data type to store a list of 

objects

scores = []
while True:

score = input("Enter score (or ENTER to finish): ")
if score == "":

break
score = int(score)
scores.append(score)

print("Scores are:", scores) Enter score (or ENTER to finish): 24
Enter score (or ENTER to finish): 26
Enter score (or ENTER to finish): 28
Enter score (or ENTER to finish): 32
Enter score (or ENTER to finish):
Scores are: [24, 26, 28, 32]

Create an empty list

Append a new element



9

List Creation
• Create an empty list

• Create a list containing 4 integers: 20, 12, 8, 6

• Create a list containing 3 floats: 1.2, 3.1, 8.0

• Create a list containing 2 strings: "Hello", "Goodbye"

• Create a list with mixed data types

list1 = []

list2 = [20, 12, 8, 6]

list3 = [1.2, 3.1, 8.0]

list4 = ["Hello", "Goodbye"]

list5 = ["Hello", 9, 3.8]



10

List Member Access
•Members in a list can be accessed using the [] operator 

with an index (similar to strings)

•Reminder: index starts from 0

>>> lst = [8,3,2,5,3,1,6]

>>> lst[0]

8

>>> lst[1]

3

>>> lst[-1]

6



11

Lists Are Mutable
•Unlike strings, list's contents can be changed

•A new element can be added using the list.append()
method (a method is a function bound to an object)

>>> lst = [8,3,9,5,3,1,6]

>>> lst

[8, 3, 9, 5, 3, 1, 6]

>>> lst[2] = 38

>>> lst

[8, 3, 38, 5, 3, 1, 6]

>>> lst

[8, 3, 38, 5, 3, 1, 6]

>>> lst.append(72)

>>> lst

[8, 3, 38, 5, 3, 1, 6, 72] PythonTutor

http://pythontutor.com/visualize.html#code=L%20%3D%20%5B1,2,3%5D%0AL.append%2810%29%0AL.append%2825%29%0AL.append%2830%29&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false


12

List's Length and List Traversal
• The function len() returns the length of a list

•A list can be used as a sequence of a for loop

>>> lst = [8,3,2,5,3,1,6]

>>> len(lst)

7

>>> for x in lst:

... print(x)

8

3

2

5

3

1

6



13

Task Revisited: Find Below Average

• Let us get back to the task

Enter student score (or ENTER to finish): 24
Enter student score (or ENTER to finish): 26
Enter student score (or ENTER to finish): 28
Enter student score (or ENTER to finish): 32
Enter student score (or ENTER to finish):
Average score is 27.5
Scores below average:
24
26

24

3226

28



14

Find Below Average – Ideas
•We will divide the task into smaller subtasks
◦ read_scores() – reads and returns scores as a list

◦ compute_average(scores) – computes the average from a list 
of scores

◦ print_below(scores,value) – prints only scores that are 
below the given value

•We will then write a subroutine for each of these subtasks



15

Find Below Average – Steps
•Main program

scores  read all scores

average  average of scores

print all values in scores
that are below average

display average

START

END



16

Find Below Average – Steps
•read_scores() subroutine

read all scores

scores  empty list

more 
score?

append score to scores

return scores

Yes

No



17

Find Below Average – Steps
•compute_average(scores) subroutine

compute average 
of scores

total  sum of all scores

count  number of scores

average  total/count

return average



18

Find Below Average – Steps
•print_below(scores,value) subroutine

print all values in scores
that are below value

read next score from scores

return
more item 
in scores?

score less 
than value?

print score

Yes

No

Yes

No



19

Find Below Average – Subroutines

def print_below(scores,value):
for s in scores:

if s < value:
print(s)

def compute_average(scores):
sum = 0
for s in scores:

sum = sum + s
return sum/len(scores)

def read_scores():
scores = []
while True:

ans = input("Enter student score (or ENTER to finish): ")
if ans == "":

break
scores.append(int(ans))

return scores

read all scores

compute average 
of scores

print all values in scores
that are below value



20

Built-in Function: sum()
• sum(lst) returns the summation of all the items in the list lst

• Therefore, compute_average() can be rewritten as

>>> sum([1,2,3,4])

10

>>> sum([10,50,21,27])

108

>>> sum(range(101))

5050

def compute_average(scores):
sum = 0
for s in scores:

sum = sum + s
return sum/len(scores)

def compute_average(scores):
return sum(scores)/len(scores)



21

Find Below Average – Testing
•Once we have defined all subroutines, let us test them one 

by one

• Testing read_scores()

>>> scores = read_scores()

Enter student score (or ENTER to finish): 28

Enter student score (or ENTER to finish): 26

Enter student score (or ENTER to finish): 32

Enter student score (or ENTER to finish): 37

Enter student score (or ENTER to finish): 

>>> scores

[28.0, 26.0, 32.0, 37.0]

def read_scores():
scores = []
while True:

ans = input("Enter student score...")
if ans == "":

break
scores.append(int(ans))

return scores



22

Find Below Average – Testing
• Testing compute_average()

>>> compute_average([1])

1.0

>>> compute_average([1,2])

1.5

>>> compute_average([1,2,3])

2.0

>>> compute_average([1.2,4.6,5.1])

3.633333333333333

def compute_average(scores):
return sum(scores)/len(scores)



23

Find Below Average – Testing
• Testing print_below()

>>> print_below([6,2,4,8,1,2],3)

2

1

2

>>> print_below([6,2,4,8,1,2],4.5)

2

4

1

2

>>> print_below([6,2,4,8,1,2],6)

2

4

1

2

def print_below(scores,value):
for s in scores:

if s < value:
print(s)



24

Find Below Average – Main
•Once we have tested all subroutines, let us write the main 

program

scores = read_scores()
avg = compute_average(scores)
print(f"Average score is {avg}")
print("Scores below average:")
print_below(scores,avg)



25

Finding Min and Max
• In addition to sum(), Python also provides min() and 
max() functions
◦ min(lst) returns the minimum value in the list lst

◦ max(lst) returns the maximum value in the list lst

>>> nums = [6,2,4,8,1,2]

>>> min(nums)

1

>>> max(nums)

8



26

Task: Score Statistics
•Read a list of scores and report the summary table, along 

with average, minimum, and maximum scores

Enter student score (or ENTER to finish): 24
Enter student score (or ENTER to finish): 26
Enter student score (or ENTER to finish): 28
Enter student score (or ENTER to finish): 32
Enter student score (or ENTER to finish): 
Student #1 score: 24
Student #2 score: 26
Student #3 score: 28
Student #4 score: 32
Average score is 27.5
Minimum score is 24
Maximum score is 32

24

3226

28



27

Score Statistics – Ideas
•Most subroutines from the previous example can be 

reused (read_scores, compute_average)

•Min and max can be computed using the built-in functions

• The only challenge is the summary table part

scores = read_scores()
show_score_summary(scores)
avg_score = compute_average(scores)
min_score = min(scores)
max_score = max(scores)
print(f"Average score is {avg_score}")
print(f"Minimum score is {min_score}")
print(f"Maximum score is {max_score}")



28

Score Statistics – Ideas
• The summary needs to display the order of each student's 

score

•A for loop with a combination of len() and range()
can help

Enter student score (or ENTER to finish): 24
Enter student score (or ENTER to finish): 26
Enter student score (or ENTER to finish): 28
Enter student score (or ENTER to finish): 32
Enter student score (or ENTER to finish): 
Student #1 score: 24
Student #2 score: 26
Student #3 score: 28
Student #4 score: 32
Average score is 27.5
Minimum score is 24
Maximum score is 32



29

Score Statistics – Program
•Only the show_score_summary() function is shown 

here

• Let's test it

def show_score_summary(scores):
for i in range(len(scores)):

print(f"Student #{i+1} score: {scores[i]}")

>>> show_score_summary([31,56,73,48])

Student #1 score: 31

Student #2 score: 56

Student #3 score: 73

Student #4 score: 48



30

List vs. String
• Lists and strings share many similarity
◦ Member access with []

◦ The len() function

◦ Their use with for loop

• The main difference is lists are mutable but strings are 
immutable

>>> s = "Hello"

>>> s[3] = "c"

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: 'str' object does not support item assignment

>>> L = [1,2,3,4,5]

>>> L[3] = 8

>>> L

[1, 2, 3, 8, 5]



31

Caveats – Lists are mutable
•Assigning two or more names to the same list may have 

undesired effect

• To make a copy of a list, use list() function instead

>>> nums1 = [1,2,4,8]

>>> nums2 = nums1

>>> nums2[2] = 20

>>> nums1

[1, 2, 20, 8]

>>> nums1 = [1,2,4,8]

>>> nums2 = list(nums1)

>>> nums2[2] = 20

>>> nums1

[1, 2, 4, 8]

>>> nums2

[1, 2, 20, 8]

1 2 4 8nums1

nums2

20

1 2 4 8

nums1

nums2 20

1 2 4 8

PythonTutor

PythonTutor

http://pythontutor.com/visualize.html#code=nums1%20%3D%20%5B1,2,4,8%5D%0Anums2%20%3D%20list%28nums1%29%0Anums2%5B2%5D%20%3D%2020&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false
http://pythontutor.com/visualize.html#code=nums1%20%3D%20%5B1,2,4,8%5D%0Anums2%20%3D%20nums1%0Anums2%5B2%5D%20%3D%2020&cumulative=false&curInstr=0&heapPrimitives=false&mode=display&origin=opt-frontend.js&py=3&rawInputLstJSON=%5B%5D&textReferences=false


32

Bonus – Membership Test
•Using the in operator

• The in operator also works with strings

>>> numbers = [5,1,8,2,7]

>>> 5 in numbers

True

>>> 9 in numbers

False

>>> s = "Hello"

>>> "e" in s

True

>>> "L" in s

False

>>> "lo" in s

True

This is a Boolean expression



33

Membership Test – Example
• The following code counts the number of vowels (a,e,i,o,u) 

in the given text

text = input("Enter a text: ")
count = 0
for c in text:

if c in "AEIOUaeiou":
count = count + 1

print(f"Found {count} vowel(s)")

Enter a text: Hello

Found 2 vowel(s)

Enter a text: Good morning

Found 4 vowel(s)



34

Bonus – List Slicing
• Slicing creates a new list as a subset of an existing list

• Slicing syntax for a list L:

• The newly created list is:

[L[start],L[start+step],L[start+2step],…]

◦ The last member DOES NOT include L[stop]
◦ start can be omitted, implying 0
◦ stop can be omitted, implying list's length
◦ step can be omitted, implying 1

L(start:stop:step)



35

Examples – List Slicing

>>> L = [1,4,9,16,25,36,49]

>>> L[2:4]

[9, 16]

>>> L[1:]

[4, 9, 16, 25, 36, 49]

>>> L[:5]

[1, 4, 9, 16, 25]

>>> L[1:6:2]

[4, 16, 36]

>>> L[::-1]

[49, 36, 25, 16, 9, 4, 1]

>>> L[:]

[1, 4, 9, 16, 25, 36, 49]

Specifying start and stop

Specifying only start

Specifying only stop

Specifying start, stop, and step

Specifying nothing (copying list)

Specifying a negative step



36

Example – List Slicing
• The following code slices a list of month names into four 

quarters

months = [
'Jan','Feb','Mar','Apr','May','Jun',
'Jul','Aug','Sep','Oct','Nov','Dec'

]

q1 = months[0:3]
q2 = months[3:6]
q3 = months[6:9]
q4 = months[9:12]

print("Quarter 1:", q1)
print("Quarter 2:", q2)
print("Quarter 3:", q3)
print("Quarter 4:", q4)

Quarter 1: ['Jan', 'Feb', 'Mar']

Quarter 2: ['Apr', 'May', 'Jun']

Quarter 3: ['Jul', 'Aug', 'Sep']

Quarter 4: ['Oct', 'Nov', 'Dec']



37

Conclusion

•A list is used to store ordered collection of values as one 
single object

• List members can be added and changed at any time

•A for loop can be used to iterate over each member

•len(), sum(), min(), and max() are some built-in 
functions that work with lists

• Lists are quite similar to strings, except that lists are 
mutable but strings are immutable



38

References
•Python data structures:
◦ https://docs.python.org/3/tutorial/datastructures.html

•Common sequence operations
◦ https://docs.python.org/3/library/stdtypes.html#sequence-types-

list-tuple-range

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range


39

Syntax Summary (1)
•Creating a list

•Accessing the member at ith position (starting at 0)

•Appending a new member at the end of the list

• Finding the list's length

L = [member0,member1,...]

L[i]

L.append(new_member)

len(L)



40

Syntax Summary (2)
• Finding the sum, minimum, and maximum of all members 

in the list (numerical members only)

• Traversing list's members

sum(L) min(L) max(L)

for member in L:
...



41

Syntax Summary (bonus)
•Checking whether value is in the list

•Create a slicing of the list

◦ start, stop, and step are all optional

value in L

L[start:stop:step]


