Kecerdasan Bisnis dalam Praktek

Predictive Analytics II

Text, Web, and Social Media Analytics

Husni

Lab. Riset JTIF UTM

Business Intelligence (BI)

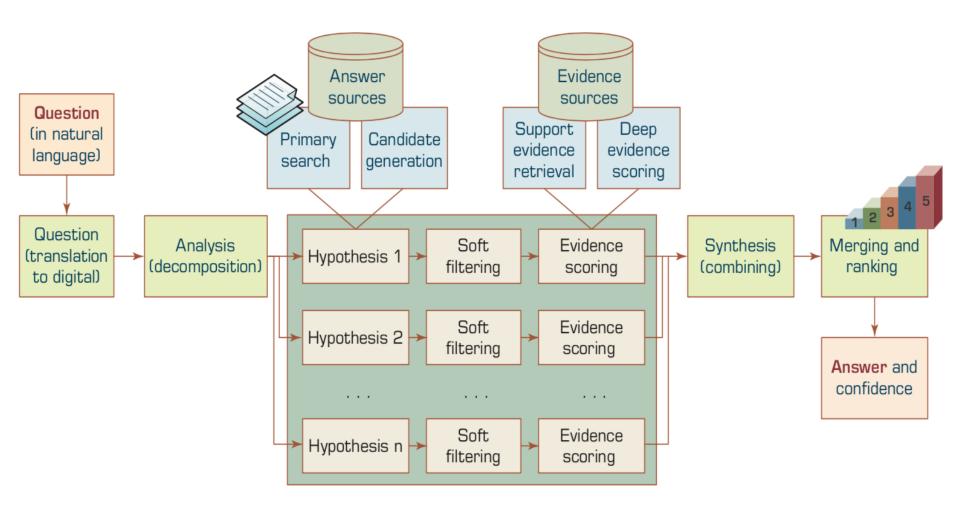
- 1 Introduction to BI and Data Science
- **2** Descriptive Analytics
- Predictive Analytics
 - 4 Prescriptive Analytics
 - 5 Big Data Analytics
 - **6** Future Trends

Predictive Analytics II: Text, Web, and Social Media Analytics

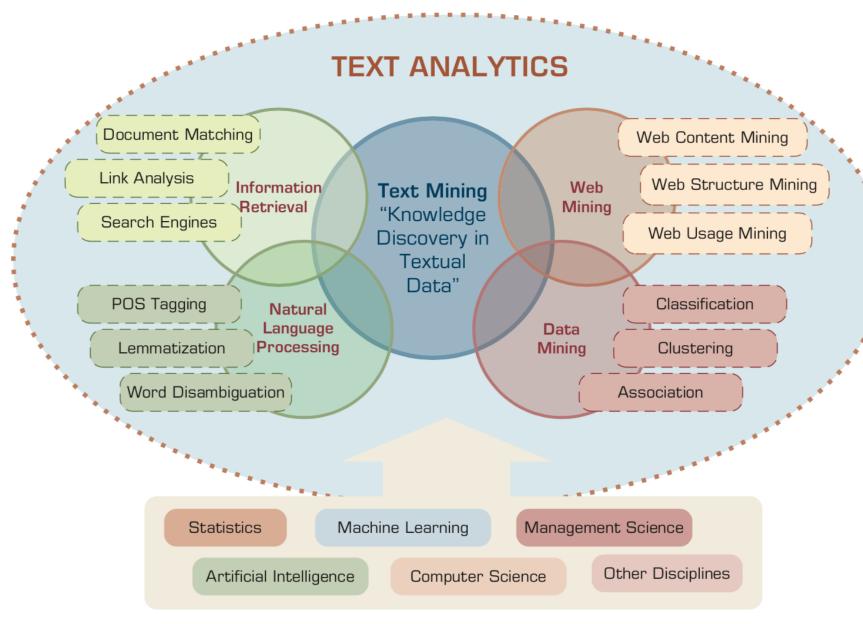
Outline

- Text Analytics and Text Mining Overview
 - Natural Language Processing (NLP)
 - Text Mining Applications
 - Text Mining Process
 - Sentiment Analysis
- Web Mining Overview
 - Search Engines
 - Web Usage Mining (Web Analytics)
- Social Analytics

A High-Level Depiction of DeepQA Architecture



Text Analytics and Text Mining



Text Analytics

- Text Analytics =
 Information Retrieval +
 Information Extraction +
 Data Mining +
 Web Mining
- Text Analytics =
 Information Retrieval +
 Text Mining

Text mining

- Text Data Mining
- Knowledge Discovery in Textual Databases

Application Areas of Text Mining

- Information extraction
- Topic tracking
- Summarization
- Categorization
- Clustering
- Concept linking
- Question answering

Natural Language Processing (NLP)

 Natural language processing (NLP) is an important component of text mining and is a subfield of artificial intelligence and computational linguistics.

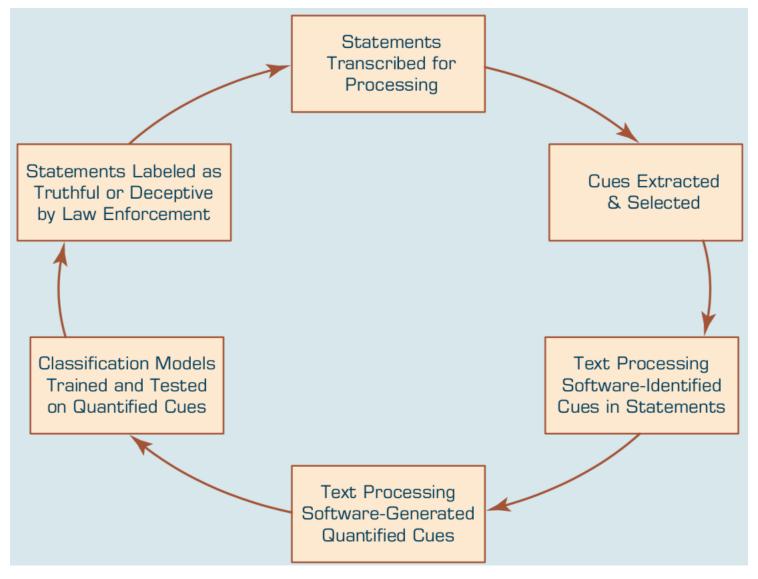
Natural Language Processing (NLP)

- Part-of-speech tagging
- Text segmentation
- Word sense disambiguation
- Syntactic ambiguity
- Imperfect or irregular input
- Speech acts

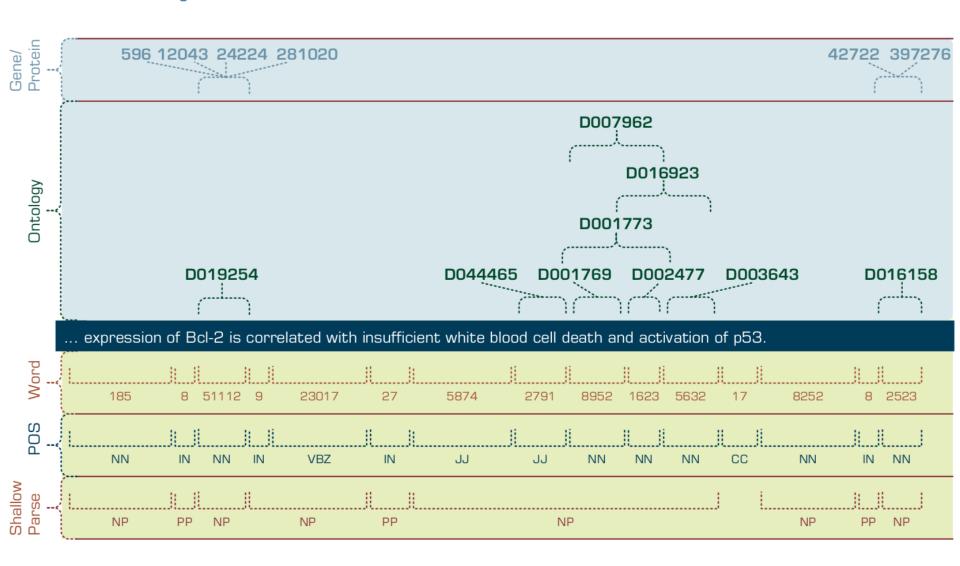
NLP Tasks

- Question answering
- Automatic summarization
- Natural language generation
- Natural language understanding
- Machine translation
- Foreign language reading
- Foreign language writing.
- Speech recognition
- Text-to-speech
- Text proofing
- Optical character recognition

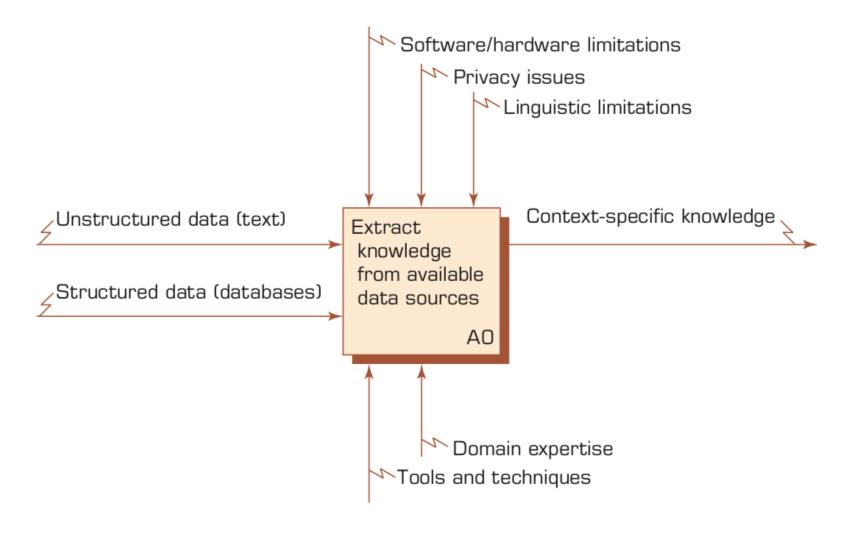
Text-Based Deception-Detection Process



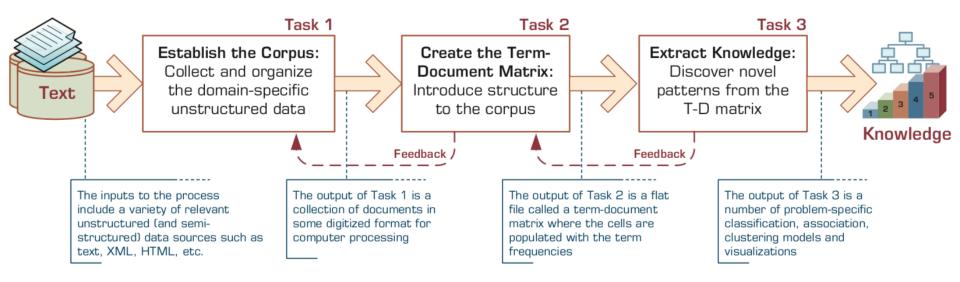
Multilevel Analysis of Text for Gene/Protein Interaction Identification



Context Diagram for the Text Mining Process



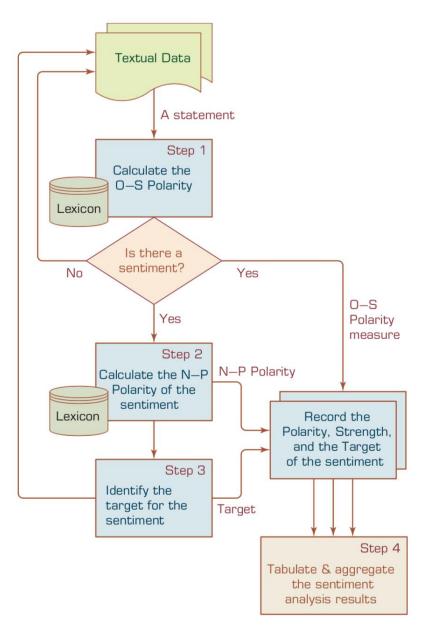
The Three-Step/Task Text Mining Process



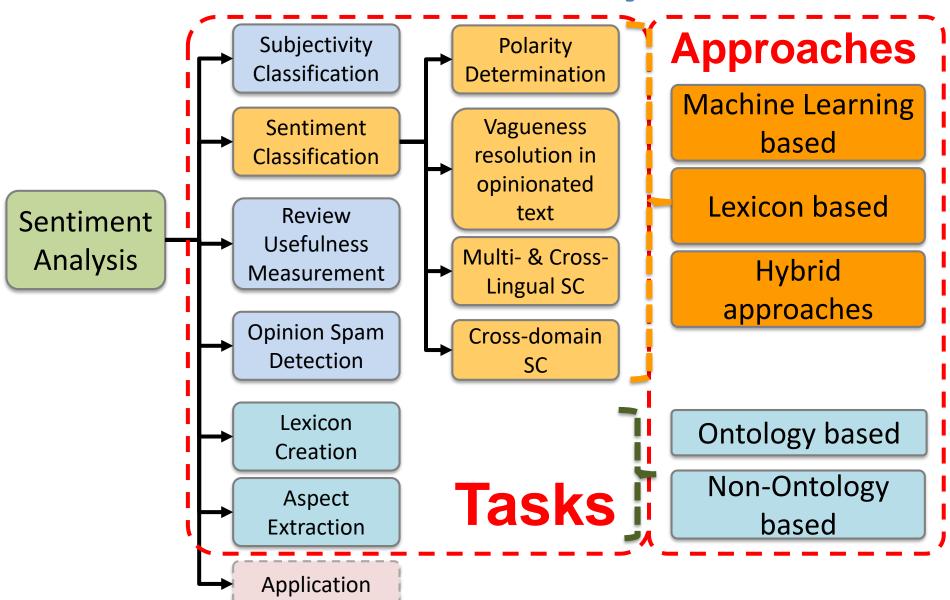
Term-Document Matrix

Terms	Invest	iment Risk Proje	ct Manage Softw	inent Jare Engine	eering opment SAP	
Document 1	1			1		
Document 2		1				
Document 3			3		1	
Document 4		1				
Document 5			2	1		
Document 6	1			1		

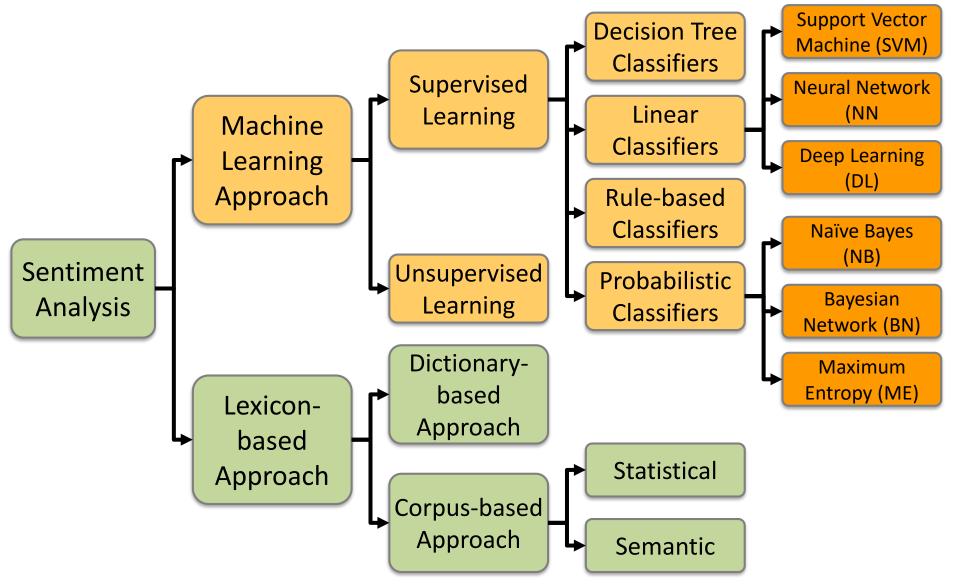
A Multistep Process to Sentiment Analysis



Sentiment Analysis



Sentiment Classification Techniques



Example of Opinion: review segment on iPhone

"I bought an iPhone a few days ago.

It was such a nice phone.

The touch screen was really cool.

The voice quality was clear too.

However, my mother was mad with me as I did not tell her before I bought it.

She also thought the phone was too expensive, and wanted me to return it to the shop. ... "

Example of Opinion: review segment on iPhone

- "(1) I bought an iPhone a few days ago.
- (2) It was such a nice phone.
- (3) The touch screen was really **cool**.

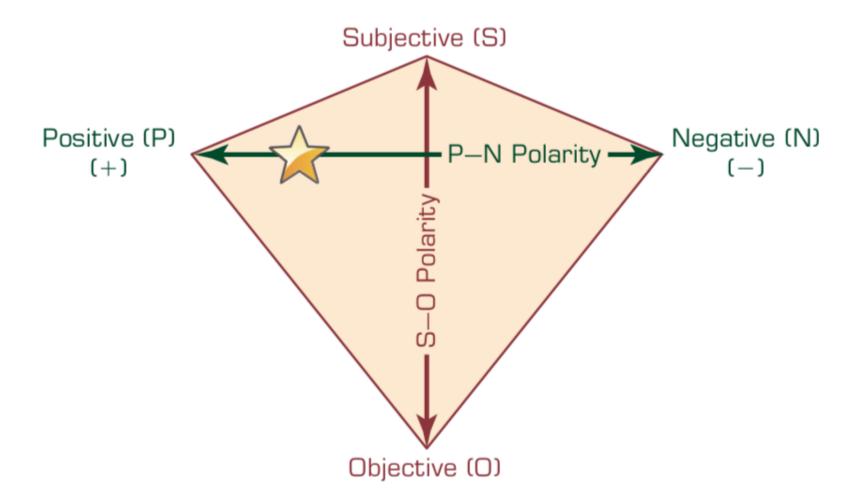
+Positive Opinion

Opinion

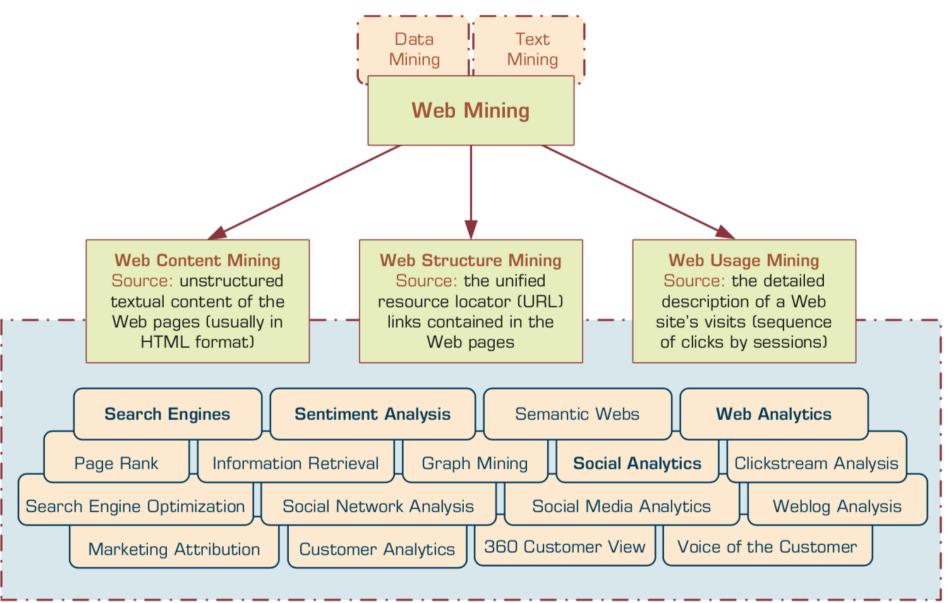
- (4) The voice quality was clear too.
- (5) However, my mother was mad with me as I did not tell her before I bought it.
- (6) She also thought the phone was too **expensive**, and wanted me to return it to the shop. ... "

 -Negative

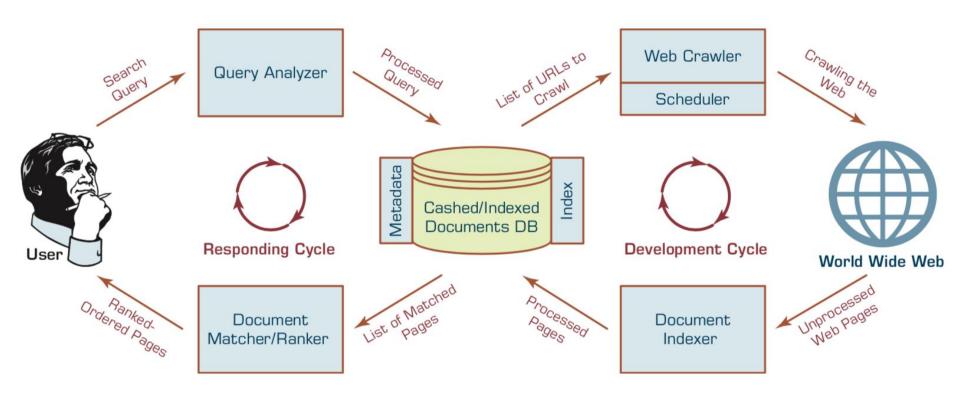
P-N Polarity and S-O Polarity Relationship



Taxonomy of Web Mining



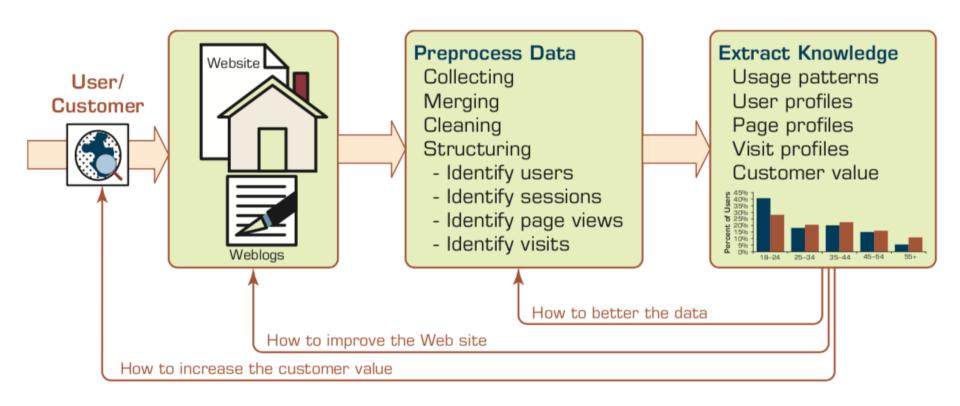
Structure of a Typical Internet Search Engine



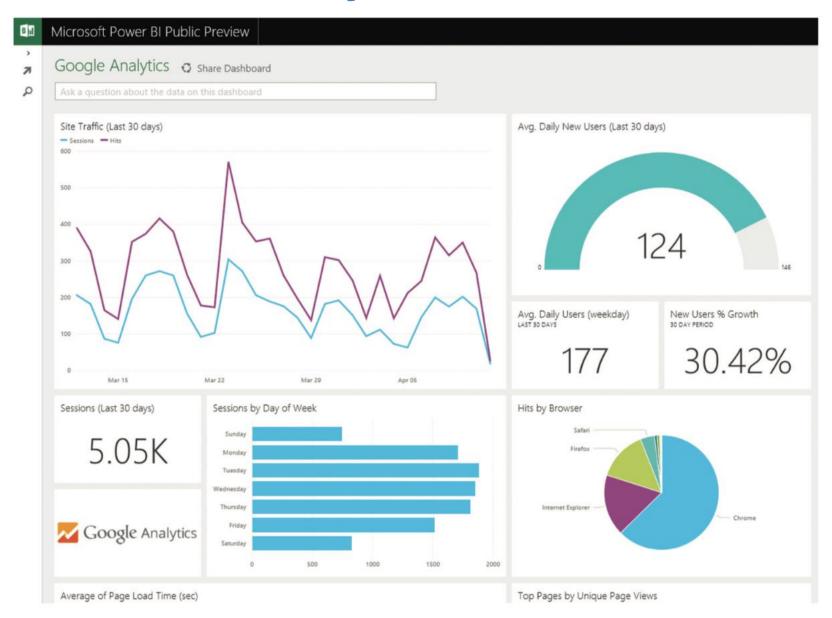
Web Usage Mining (Web Analytics)

- Web usage mining (Web analytics)
 is the extraction of useful information
 from data generated
 through Web page visits and transactions.
- Clickstream Analysis

Extraction of Knowledge from Web Usage Data



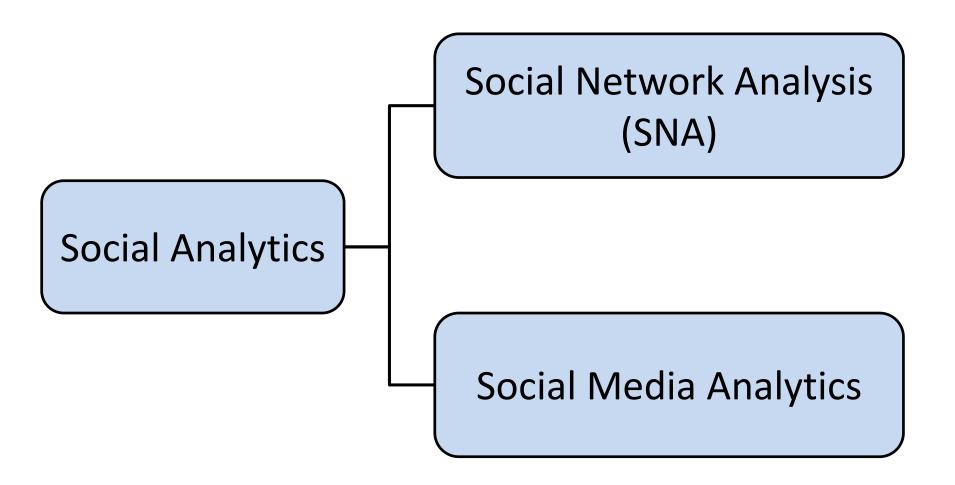
Web Analytics Dashboard



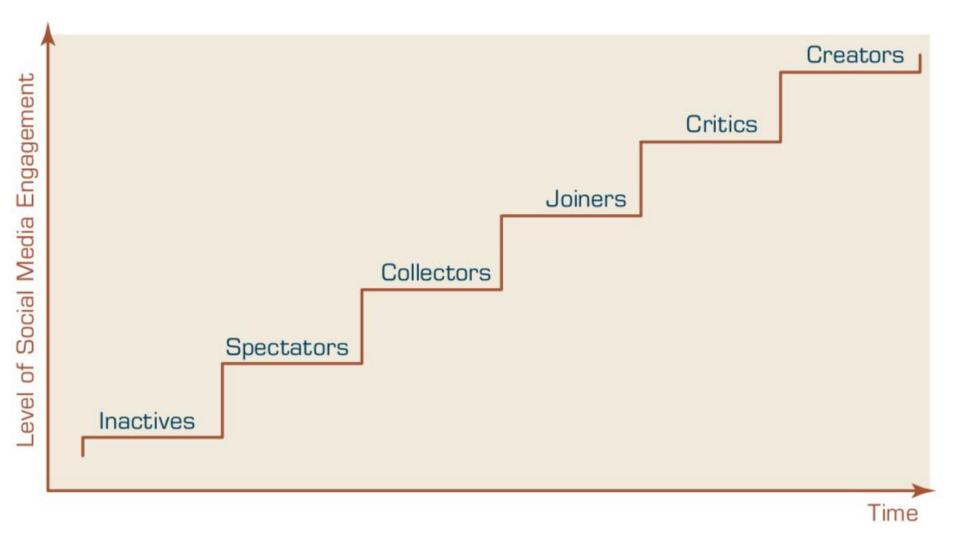
Social Analytics

 Social analytics is defined as monitoring, analyzing, measuring and interpreting digital interactions and relationships of people, topics, ideas and content.

Branches of Social Analytics

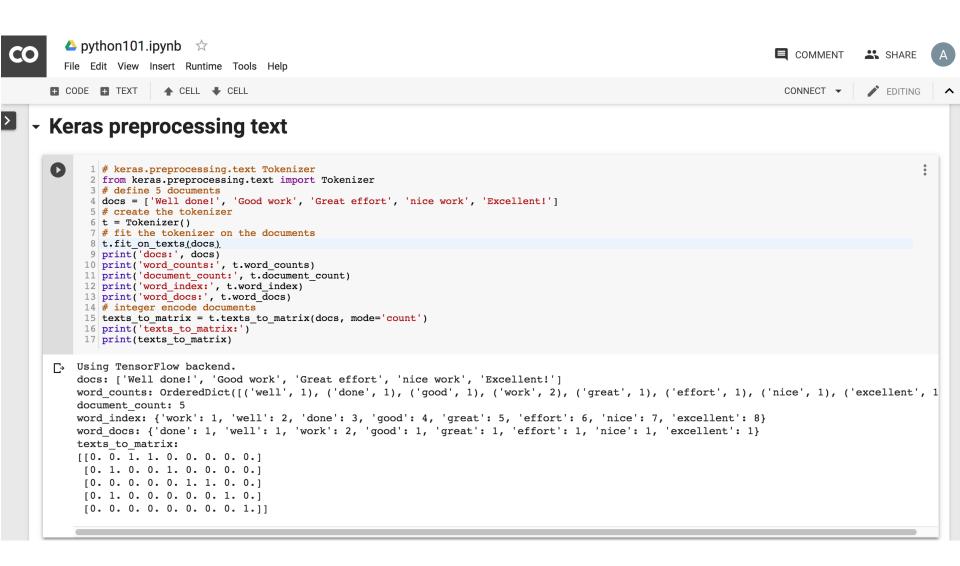


Evolution of Social Media User Engagement

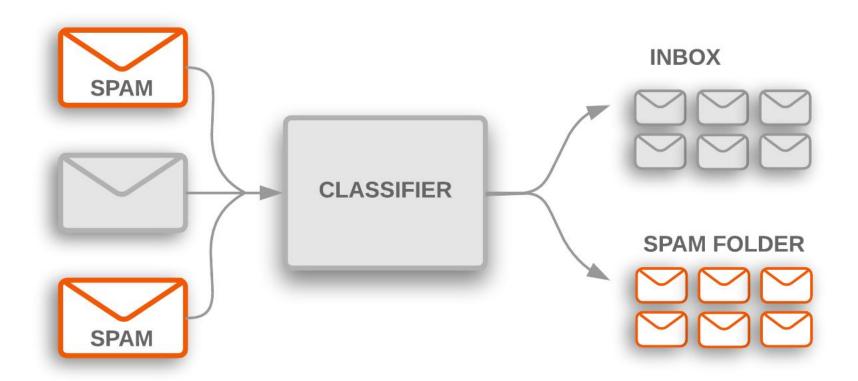


Python in Google Colab

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT



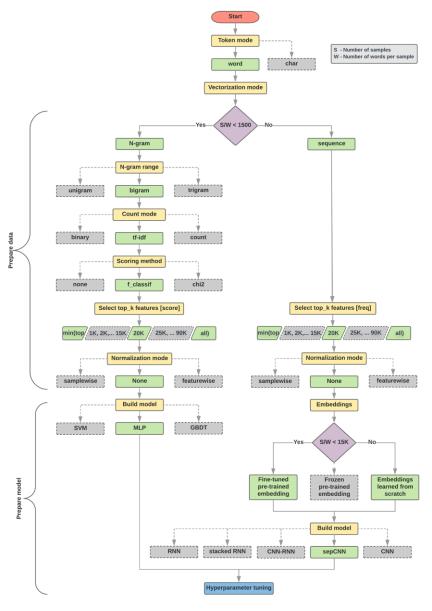
Text Classification



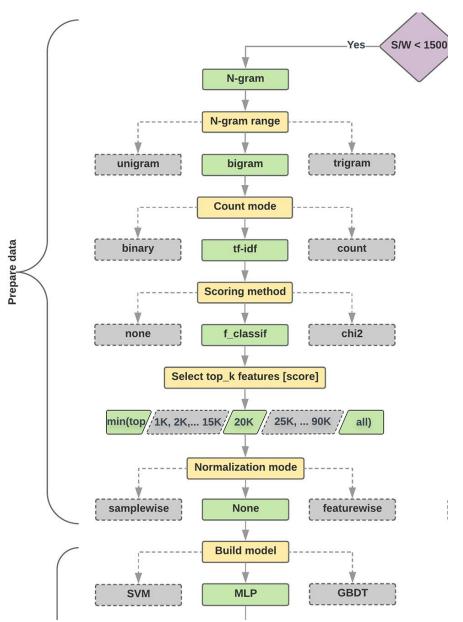
Text Classification Workflow

- Step 1: Gather Data
- Step 2: Explore Your Data
- Step 2.5: Choose a Model*
- Step 3: Prepare Your Data
- Step 4: Build, Train, and Evaluate Your Model
- Step 5: Tune Hyperparameters
- Step 6: Deploy Your Model

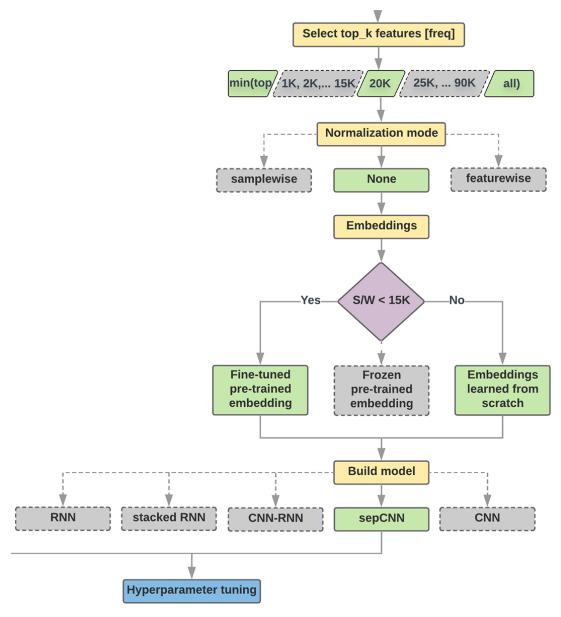
Text Classification Flowchart



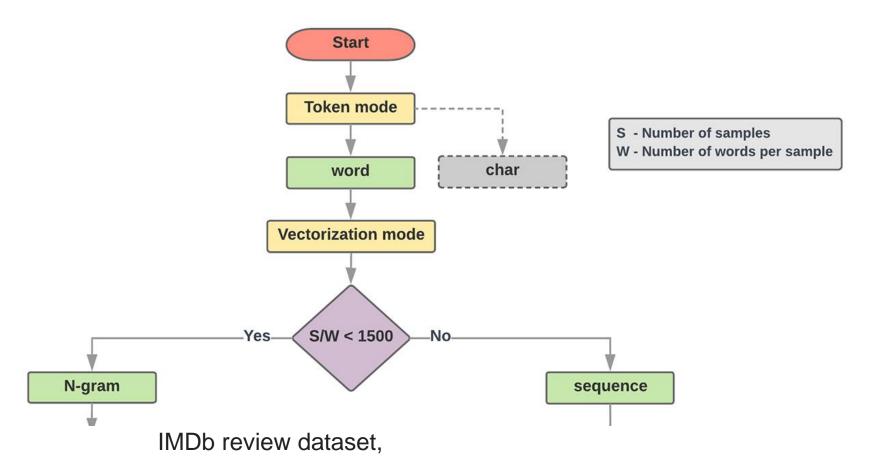
Text Classification S/W<1500: N-gram



Text Classification S/W>=1500: Sequence

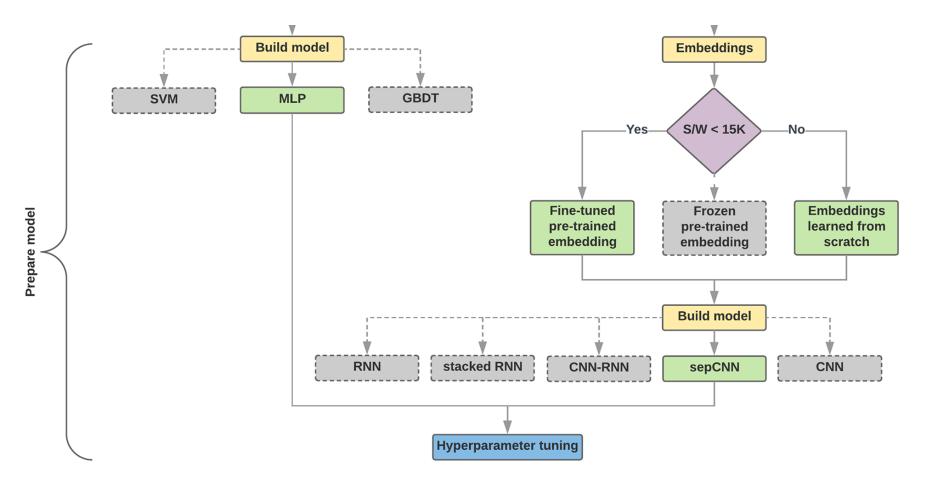


Step 2.5: Choose a Model Samples/Words < 1500 150,000/100 = 1500



the samples/words-per-sample ratio is ~ 144

Step 2.5: Choose a Model Samples/Words < 15,000 1,500,000/100 = 15,000



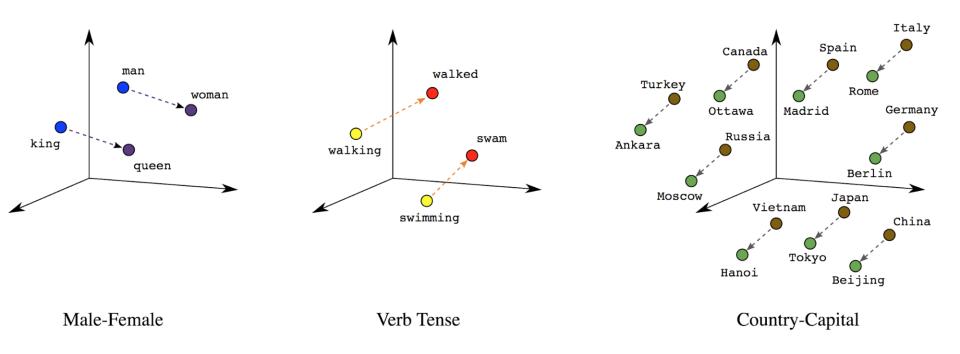
Step 3: Prepare Your Data

```
Texts:
T1: 'The mouse ran up the clock'
T2: 'The mouse ran down'
Token Index:
{ 'the': 1, 'mouse': 2, 'ran': 3, 'up': 4, 'clock': 5, 'down': 6, }.
   NOTE: 'the' occurs most frequently,
         so the index value of 1 is assigned to it.
         Some libraries reserve index 0 for unknown tokens,
         as is the case here.
Sequence of token indexes:
T1: 'The mouse ran up the clock' =
       [1, 2, 3, 4, 1, 5]
T1: 'The mouse ran down' =
       [1, 2, 3, 6]
```

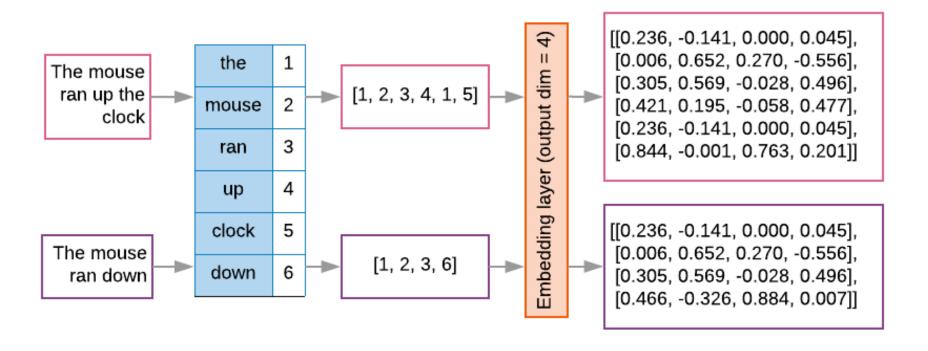
One-hot encoding

```
'The mouse ran up the clock' =
             [0, 1, 0, 0, 0, 0, 0],
The
               [0, 0, 1, 0, 0, 0, 0],
mouse
               [0, 0, 0, 1, 0, 0, 0],
ran
               [0, 0, 0, 0, 1, 0, 0],
up
               [0, 1, 0, 0, 0, 0, 0],
the
               [0, 0, 0, 0, 0, 1, 0]
clock
               [0, 1, 2, 3, 4, 5, 6]
```

Word embeddings



Word embeddings



```
t1 = 'The mouse ran up the clock'
t2 = 'The mouse ran down'
s1 = t1.lower().split(' ')
s2 = t2.lower().split(' ')
terms = s1 + s2
sortedset = sorted(set(terms))
print('terms =', terms)
print('sortedset =', sortedset)
```

```
t1 = 'The mouse ran up the clock'
t2 = 'The mouse ran down'
s1 = t1.lower().split(' ')
s2 = t2.lower().split(' ')
terms = s1 + s2
sortedset = sorted(set(terms))
print('terms =', terms)
print('terms =', terms)
print('sortedset =', sortedset)
```

terms = ['the', 'mouse', 'ran', 'up', 'the', 'clock', 'the', 'mouse', 'ran', 'down']

sortedset = ['clock', 'down', 'mouse', 'ran', 'the', 'up']

```
t1 = 'The mouse ran up the clock'
t2 = 'The mouse ran down'
s1 = t1.lower().split(' ')
s2 = t2.lower().split(' ')
terms = s1 + s2
print(terms)
tfdict = {}
for term in terms:
    if term not in tfdict:
        tfdict[term] = 1
    else:
        tfdict[term] += 1
a = []
for k,v in tfdict.items():
    a.append('{}, {}'.format(k,v))
print(a)
```

```
sorted by value reverse = sorted(tfdict.items(),
key=lambda kv: kv[1], reverse=True)
sorted by value reverse dict =
dict(sorted by value reverse)
id2word = {id: word for id, word in
enumerate (sorted by value reverse dict) }
word2id = dict([(v, k) for (k, v) in
id2word.items()])
sorted by value: [('up', 1), ('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3)]
sorted by value2: ['the', 'mouse', 'ran', 'up', 'clock', 'down']
sorted by value reverse: [('the', 3), ('mouse', 2), ('ran', 2), ('up', 1), ('clock', 1), ('down', 1)]
sorted by value reverse dict {'the': 3, 'mouse': 2, 'ran': 2, 'up': 1, 'clock': 1, 'down': 1}
id2word {0: 'the', 1: 'mouse', 2: 'ran', 3: 'up', 4: 'clock', 5: 'down'}
word2id { 'the': 0, 'mouse': 1, 'ran': 2, 'up': 3, 'clock': 4, 'down': 5}
len words: 6
sorted by key: [('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3), ('up', 1)]
the, 3
mouse, 2
ran, 2
up, 1
clock, 1
down, 1
```

```
sorted by value = sorted(tfdict.items(), key=lambda kv: kv[1])
print('sorted by value: ', sorted by value)
sorted by value2 = sorted(tfdict, key=tfdict.get, reverse=True)
print('sorted by value2: ', sorted by value2)
sorted by value reverse = sorted(tfdict.items(), key=lambda kv: kv[1], reverse=True)
print('sorted by value reverse: ', sorted by value reverse)
sorted by value reverse dict = dict(sorted by value reverse)
print('sorted by value reverse dict', sorted by value reverse dict)
id2word = {id: word for id, word in enumerate(sorted by value reverse dict)}
print('id2word', id2word)
word2id = dict([(v, k) for (k, v) in id2word.items()])
print('word2id', word2id)
print('len words:', len(word2id))
sorted by key = sorted(tfdict.items(), key=lambda kv: kv[0])
print('sorted by key: ', sorted by key)
tfstring = '\n'.join(a)
print(tfstring)
tf = tfdict.get('mouse')
print(tf)
sorted by value: [('up', 1), ('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3)]
sorted by value2: ['the', 'mouse', 'ran', 'up', 'clock', 'down']
sorted by value reverse: [('the', 3), ('mouse', 2), ('ran', 2), ('up', 1), ('clock', 1), ('down', 1)]
sorted by value reverse dict { 'the': 3, 'mouse': 2, 'ran': 2, 'up': 1, 'clock': 1, 'down': 1}
id2word {0: 'the', 1: 'mouse', 2: 'ran', 3: 'up', 4: 'clock', 5: 'down'}
word2id { 'the': 0, 'mouse': 1, 'ran': 2, 'up': 3, 'clock': 4, 'down': 5}
len words: 6
sorted by key: [('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3), ('up', 1)]
the, 3
mouse, 2
ran, 2
up, 1
clock, 1
down, 1
                                                                                                  47
```

from

keras.preprocessing.text import Tokenizer

```
1 from keras.preprocessing.text import Tokenizer
 2 # define 5 documents
 3 docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
 4 # create the tokenizer
 5 t = Tokenizer()
 6 # fit the tokenizer on the documents
 7 t.fit on texts(docs)
 8 print('docs:', docs)
 9 print('word counts:', t.word counts)
10 print('document count:', t.document count)
11 print('word index:', t.word index)
12 print('word docs:', t.word docs)
13 # integer encode documents
14 texts to matrix = t.texts to matrix(docs, mode='count')
15 print('texts to matrix:')
16 print(texts to matrix)
docs: ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
word counts: OrderedDict([('well', 1), ('done', 1), ('good', 1), ('work', 2), ('great', 1), ('effort', 1), ('nj
document count: 5
word index: {'work': 1, 'well': 2, 'done': 3, 'good': 4, 'great': 5, 'effort': 6, 'nice': 7, 'excellent': 8}
word docs: {'done': 1, 'well': 1, 'work': 2, 'good': 1, 'great': 1, 'effort': 1, 'nice': 1, 'excellent': 1}
texts to matrix:
[[0. 0. 1. 1. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 1. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 1. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 1.]]
```

from

keras.preprocessing.text import Tokenizer

```
from keras.preprocessing.text import Tokenizer
# define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice
work', 'Excellent!']
# create the tokenizer
t = Tokenizer()
# fit the tokenizer on the documents
t.fit on texts(docs)
print('docs:', docs)
print('word counts:', t.word counts)
print('document count:', t.document count)
print('word index:', t.word index)
print('word docs:', t.word docs)
# integer encode documents
texts to matrix = t.texts to matrix(docs, mode='count')
print('texts to matrix:')
print(texts to matrix)
```

texts_to_matrix = t.texts to matrix(docs, mode='count')

```
docs: ['Well done!', 'Good work', 'Great effort',
'nice work', 'Excellent!'
word counts: OrderedDict([('well', 1), ('done', 1),
('good', 1), ('work', 2), ('great', 1), ('effort', 1),
('nice', 1), ('excellent', 1)])
document count: 5
word index: {'work': 1, 'well': 2, 'done': 3, 'good':
4, 'great': 5, 'effort': 6, 'nice': 7, 'excellent': 8}
word docs: {'done': 1, 'well': 1, 'work': 2, 'good': 1,
'great': 1, 'effort': 1, 'nice': 1, 'excellent': 1}
texts to matrix:
[[0. 0. 1. 1. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 1. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 1. 0.]
 [0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 1.]]
```

t.texts to matrix(docs, mode='tfidf')

```
from keras.preprocessing.text import Tokenizer
# define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work',
'Excellent!'
# create the tokenizer
t = Tokenizer()
# fit the tokenizer on the documents
t.fit on texts(docs)
print('docs:', docs)
print('word counts:', t.word counts)
print('document count:', t.document count)
print('word index:', t.word index)
print('word docs:', t.word docs)
# integer encode documents
texts to matrix = t.texts to matrix(docs, mode='tfidf')
print('texts to matrix:')
print(texts to matrix)
texts to matrix:
[[0. 0. 1.25276297 1.25276297 0. 0. 0. 0. 0. ]
[0. 0.98082925 0. 0. 1.25276297 0. 0. 0. 0. ]
[0. 0. 0. 0. 1.25276297 1.25276297 0. 0. ]
[0. 0.98082925 0. 0. 0. 0. 0. 1.25276297 0. ]
```

[0. 0. 0. 0. 0. 0. 0. 1.25276297]]

Summary

- Text Analytics and Text Mining Overview
 - Natural Language Processing (NLP)
 - Text Mining Applications
 - Text Mining Process
 - Sentiment Analysis
- Web Mining Overview
 - Search Engines
 - Web Usage Mining (Web Analytics)
- Social Analytics

References

- Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson.
- Jake VanderPlas (2016),
 Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly Media.