Kecerdasan Bisnis Terapan

Natural Language Processing

Husni Lab. Riset ITIF UTM

Business Intelligence (BI)

- 1 Introduction to BI and Data Science
- **Descriptive Analytics**
- **3** Predictive Analytics
- 4 Prescriptive Analytics
- Big Data Analytics
- **6** Future Trends

Natural Language Processing (NLP)

Outline

- Natural Language Processing (NLP)
- NLP Libraries and Tools
- NLP and Text Analytics with Python

Example of Opinion: review segment on iPhone

"I bought an iPhone a few days ago.

It was such a nice phone.

The touch screen was really cool.

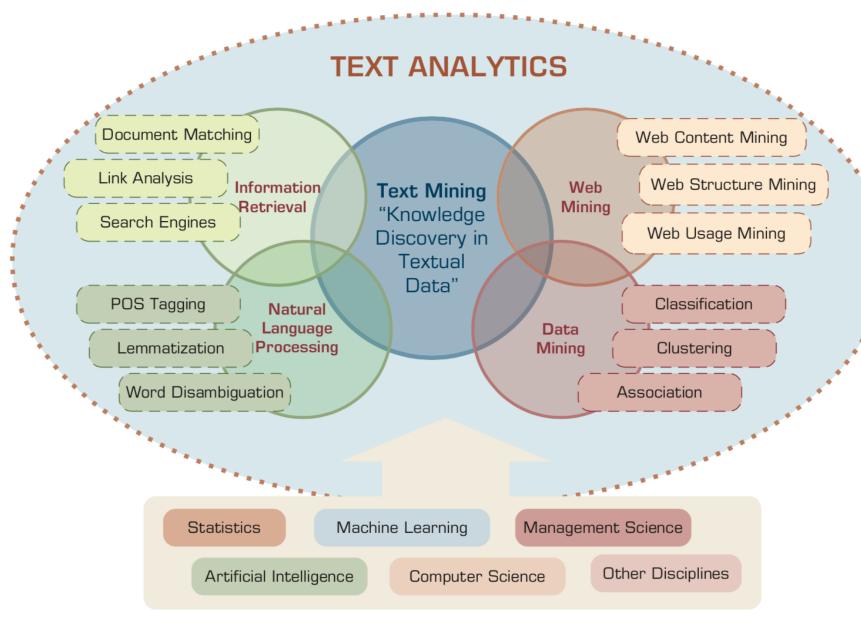
The voice quality was clear too.

However, my mother was mad with me as I did not tell her before I bought it.

She also thought the phone was too expensive, and wanted me to return it to the shop. ... "

Example of Opinion: review segment on iPhone

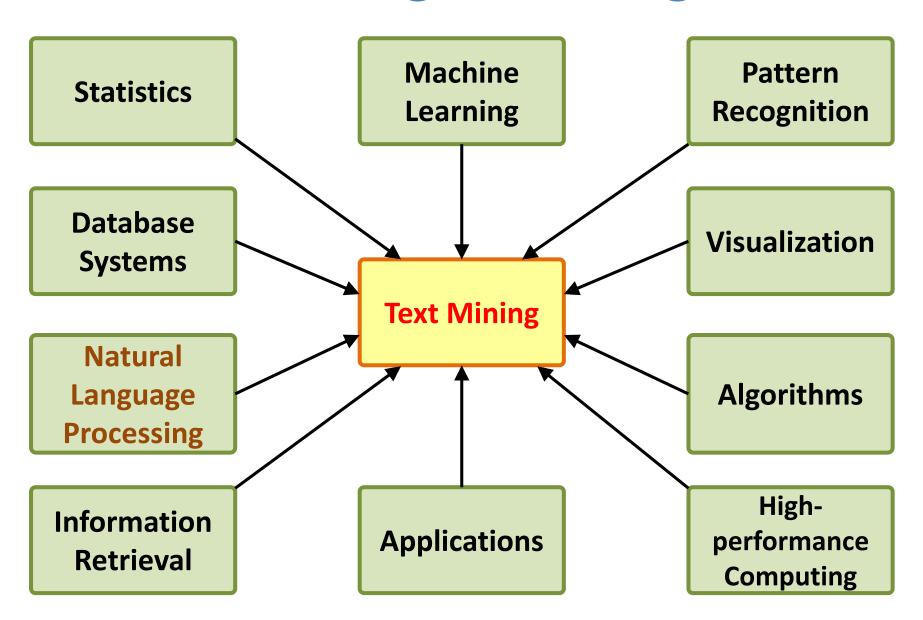
- "(1) I bought an iPhone a few days ago.
- (2) It was such a nice phone.
- (3) The touch screen was really **cool**.


+Positive Opinion

Opinion

- (4) The voice quality was clear too.
- (5) However, my mother was mad with me as I did not tell her before I bought it.
- (6) She also thought the phone was too **expensive**, and wanted me to return it to the shop. ... "

 -Negative


Text Analytics and Text Mining

Natural Language Processing (NLP)

Natural language processing (NLP)
 is an important component of
 text mining and
 is a subfield of
 artificial intelligence and
 computational linguistics.

Text Mining Technologies

Natural Language Processing (NLP) and Text Mining

Raw text

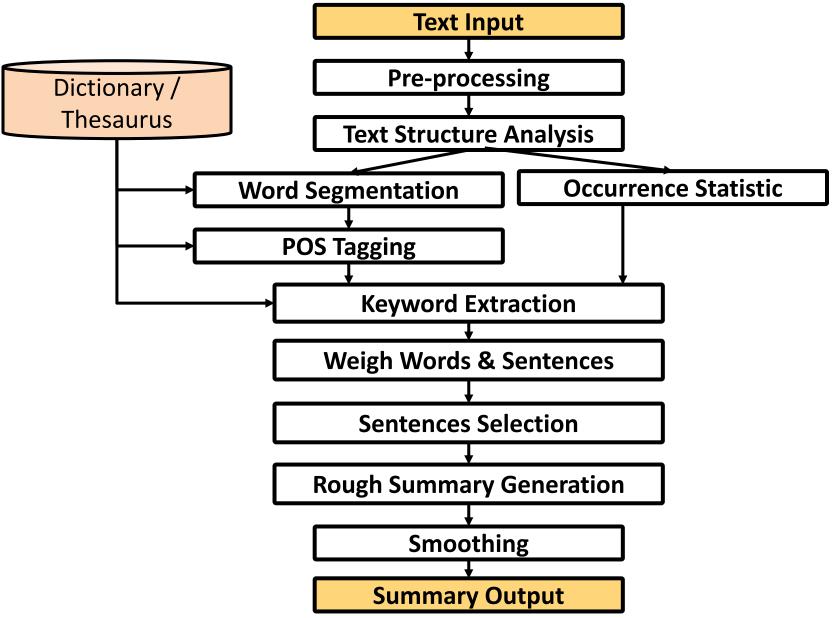
Sentence Segmentation

Tokenization

Part-of-Speech (POS)

Stop word removal

Stemming / Lemmatization


Dependency Parser

String Metrics & Matching

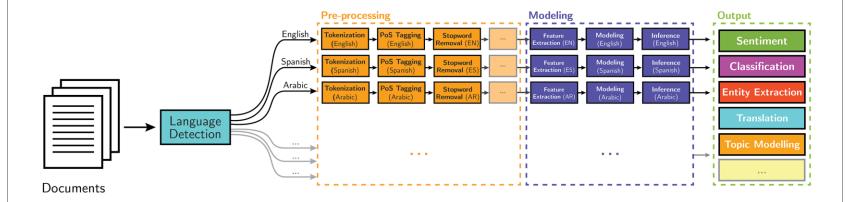
word's stem am → am

word's lemma $am \rightarrow be$ having → hav having → have

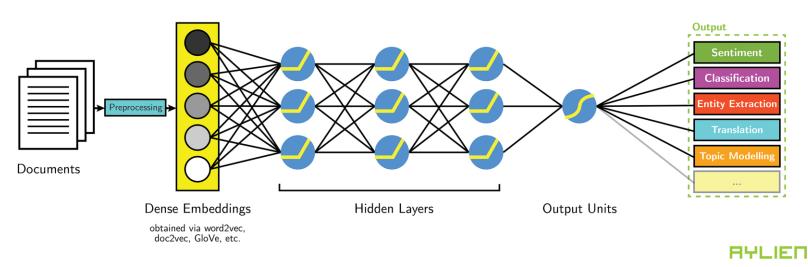
Text Summarization

Topic Modeling

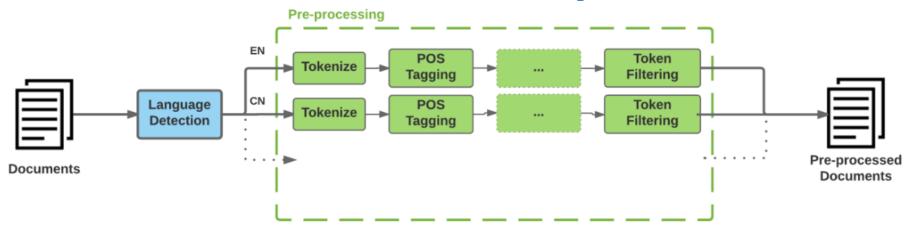
Natural Language Processing (NLP)

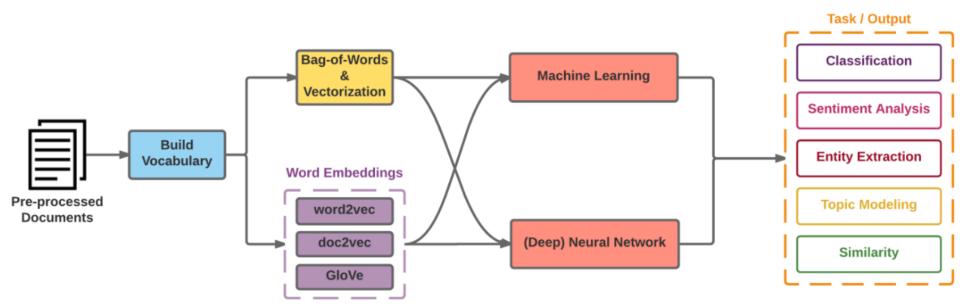

- Part-of-speech tagging
- Text segmentation
- Word sense disambiguation
- Syntactic ambiguity
- Imperfect or irregular input
- Speech acts

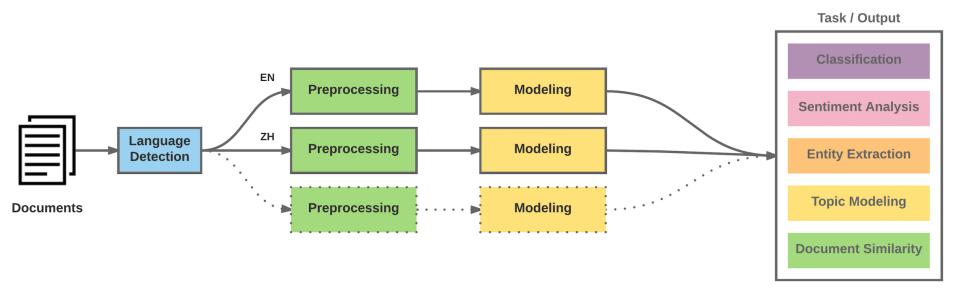
NLP Tasks


- Question answering
- Automatic summarization
- Natural language generation
- Natural language understanding
- Machine translation
- Foreign language reading
- Foreign language writing.
- Speech recognition
- Text-to-speech
- Text proofing
- Optical character recognition

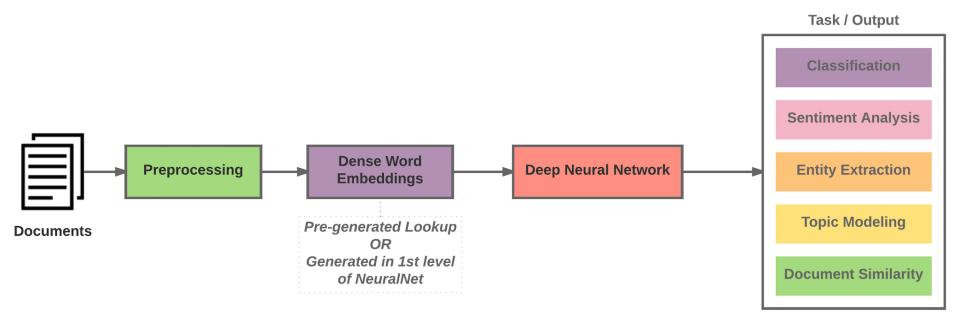
Classical NLP




Deep Learning-based NLP


15

Modern NLP Pipeline

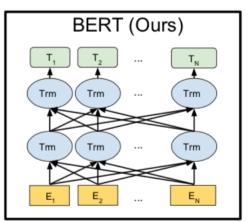


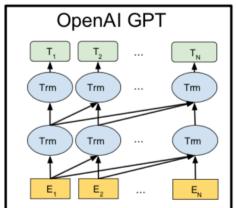
Modern NLP Pipeline

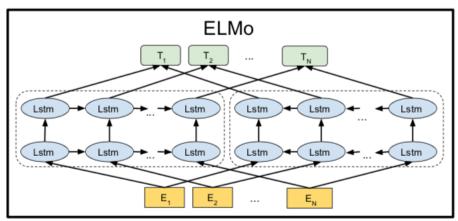
Deep Learning NLP

BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding


BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

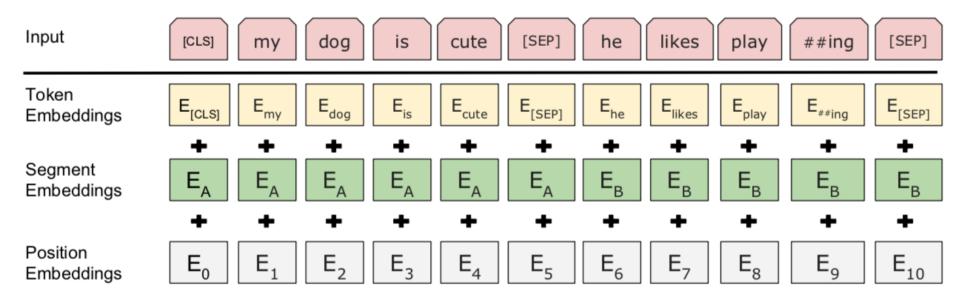

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova Google AI Language


{jacobdevlin, mingweichang, kentonl, kristout}@google.com

BERT

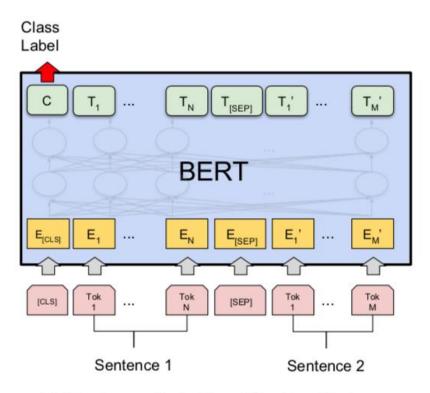
Bidirectional Encoder Representations from Transformers

Pre-training model architectures


BERT uses a bidirectional Transformer.

OpenAl GPT uses a left-to-right Transformer.

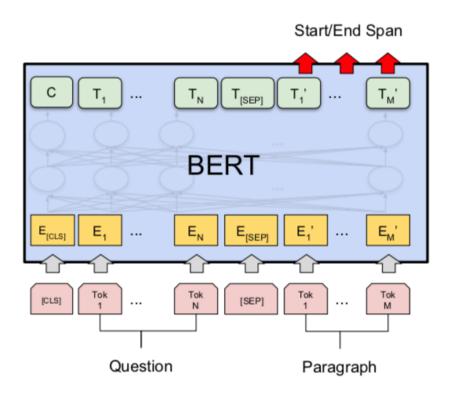
ELMo uses the concatenation of independently trained left-to-right and right- to-left LSTM to generate features for downstream tasks.

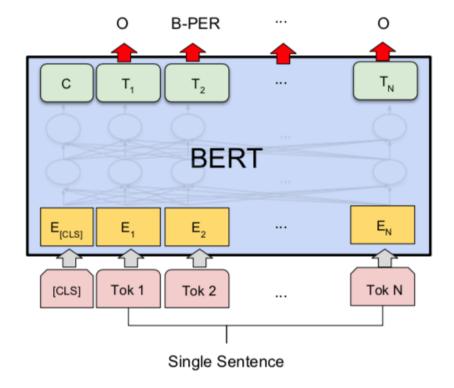

Among three, only BERT representations are jointly conditioned on both left and right context in all layers.

BERT input representation

The input embeddings is the sum of the token embeddings, the segmentation embeddings and the position embeddings.

BERT Sequence-level tasks




(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

BERT Token-level tasks

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

General Language Understanding Evaluation (GLUE) benchmark GLUE Test results

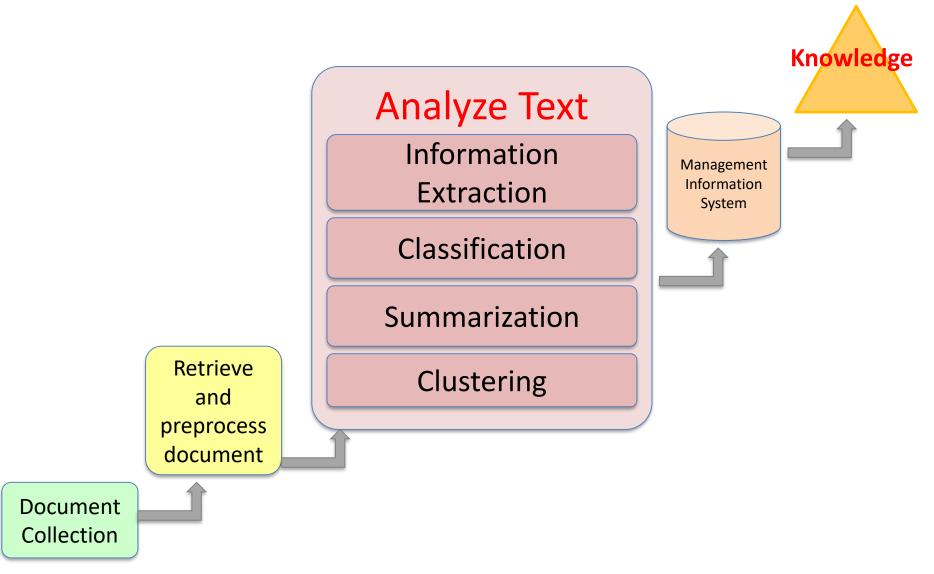
System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERT _{BASE}	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

MNLI: Multi-Genre Natural Language Inference

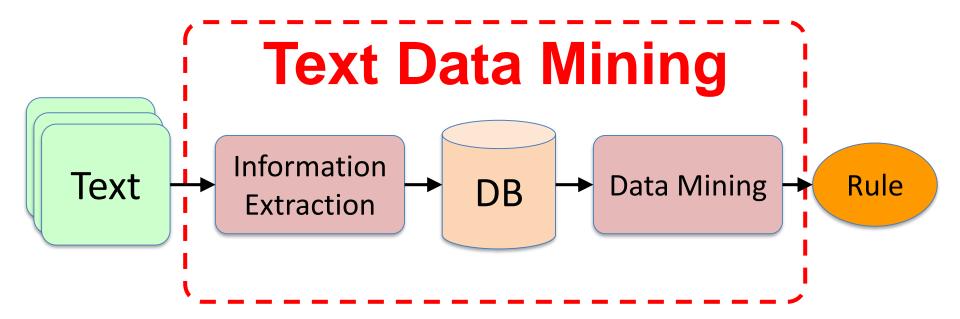
QQP: Quora Question Pairs

QNLI: Question Natural Language Inference

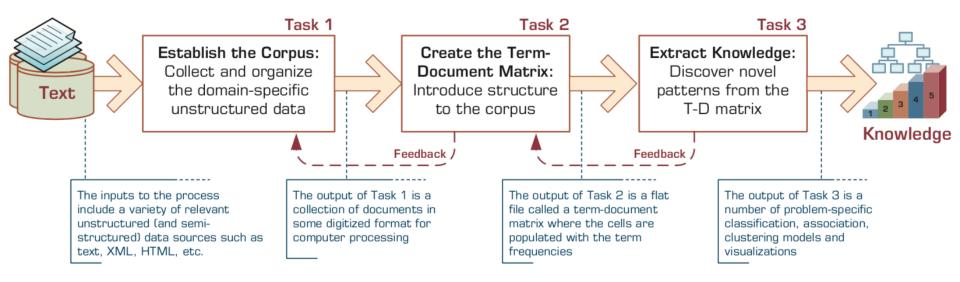
SST-2: The Stanford Sentiment Treebank


CoLA: The Corpus of Linguistic Acceptability

STS-B:The Semantic Textual Similarity Benchmark


MRPC: Microsoft Research Paraphrase Corpus

RTE: Recognizing Textual Entailment


An example of Text Mining

Overview of Information Extraction based Text Mining Framework

The Three-Step/Task Text Mining Process

Term-Document Matrix

Terms	Invest	iment Risk Proje	ct Manage Softw	inent Jare Engine	eering opment SAP	
Document 1	1			1		
Document 2		1				
Document 3			3		1	
Document 4		1				
Document 5			2	1		
Document 6	1			1		

NLP Libraries and Tools

Natural Language Processing with Python

- Analyzing Text with the Natural Language Toolkit

Natural Language Processing with Python

- Analyzing Text with the Natural Language Toolkit

Steven Bird, Ewan Klein, and Edward Loper

This version of the NLTK book is updated for Python 3 and NLTK 3. The first edition of the book, published by O'Reilly, is available at http://nltk.org/book_led/. (There are currently no plans for a second edition of the book.)

- 0. Preface
- 1. Language Processing and Python
- 2. Accessing Text Corpora and Lexical Resources
- 3. Processing Raw Text
- 4. Writing Structured Programs
- 5. Categorizing and Tagging Words (minor fixes still required)
- 6. Learning to Classify Text
- 7. Extracting Information from Text
- 8. Analyzing Sentence Structure
- 9. Building Feature Based Grammars
- 10. Analyzing the Meaning of Sentences (minor fixes still required)
- 11. Managing Linguistic Data (minor fixes still required)
- 12. Afterword: Facing the Language Challenge

Bibliography

Term Index

This book is made available under the terms of the <u>Creative Commons Attribution Noncommercial No-Derivative-Works 3.0 US License</u>. Please post any questions about the materials to the <u>nltk-users</u> mailing list. Please report any errors on the <u>issue tracker</u>.

spaCy

Industrial-Strength
Natural Language
Processing
In Python

Fastest in the world

spaCy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. Independent research has confirmed that spaCy is the fastest in the world. If your application needs to process entire web dumps, spaCy is the library you want to be using.

Get things done

spaCy is designed to help you do real work — to build real products, or gather real insights. The library respects your time, and tries to avoid wasting it. It's easy to install, and its API is simple and productive. I like to think of spaCy as the Ruby on Rails of Natural Language Processing.

Deep learning

spaCy is the best way to prepare text for deep learning. It interoperates seamlessly with TensorFlow, Keras, Scikit-Learn, Gensim and the rest of Python's awesome AI ecosystem. spaCy helps you connect the statistical models trained by these libraries to the rest of your application.

USAGE

DEMOS BLOG

gensim

fork me on Citylub

gensim

topic modelling for humans

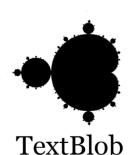
Home

Tutorials

Install

Support

API


About

```
>>> from gensim import corpora, models, similarities
>>>
>>> # Load corpus iterator from a Matrix Market file on disk.
>>> corpus = corpora.MmCorpus('/path/to/corpus.mm')
>>>
>>> # Initialize Latent Semantic Indexing with 200 dimensions.
>>> lsi = models.LsiModel(corpus, num_topics=200)
>>>
>>> # Convert another corpus to the Latent space and index it.
>>> index = similarities.MatrixSimilarity(lsi[another_corpus])
>>>
>>> # Compute similarity of a query vs. indexed documents
>>> sims = index[query]
```

Gensim is a FREE Python library

- Scalable statistical semantics
- Analyze plain-text documents for semantic structure
- Retrieve semantically similar documents

TextBlob

3,777

TextBlob is a Python (2 and 3) library for processing textual data. It provides a consistent API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, and more.

Useful Links

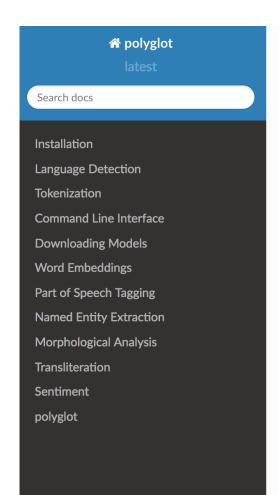
TextBlob @ PyPI
TextBlob @ GitHub
Issue Tracker

Stay Informed

C) Follow @sloria

Donate

If you find TextBlob useful,


TextBlob: Simplified Text Processing

Release vo.12.0. (Changelog)

TextBlob is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more.

```
from textblob import TextBlob
text = '''
The titular threat of The Blob has always struck me as the ultimate movie
monster: an insatiably hungry, amoeba-like mass able to penetrate
virtually any safequard, capable of—as a doomed doctor chillingly
describes it--"assimilating flesh on contact.
Snide comparisons to gelatin be damned, it's a concept with the most
devastating of potential consequences, not unlike the grey goo scenario
proposed by technological theorists fearful of
artificial intelligence run rampant.
blob = TextBlob(text)
                    # [('The', 'DT'), ('titular', 'JJ'),
blob.tags
                    # ('threat', 'NN'), ('of', 'IN'), ...]
blob.noun_phrases
                    # WordList(['titular threat', 'blob',
                                 'ultimate movie monster',
                                 'amoeba-like mass', ...])
for sentence in blob.sentences:
    print(sentence.sentiment.polarity)
# 0.060
```

Polyglot

Docs » Welcome to polyglot's documentation!

Edit on GitHub

Welcome to polyglot's documentation!

polyglot

downloads 17k/month pypi package 16.7.4 build passing docs passing

Polyglot is a natural language pipeline that supports massive multilingual applications.

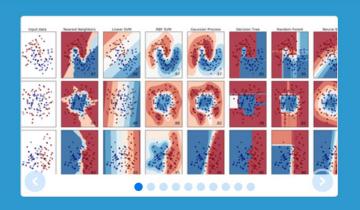
- Free software: GPLv3 license
- Documentation: http://polyglot.readthedocs.org.

Features

- Tokenization (165 Languages)
- Language detection (196 Languages)
- Named Entity Recognition (40 Languages)
- Part of Speech Tagging (16 Languages)
- Sentiment Analysis (136 Languages)
- Word Embeddings (137 Languages)
- Morphological analysis (135 Languages)
- Transliteration (69 Languages)

scikit-learn

Home In


Installation Documentation -

Examples

Google Custom Search

Search &

powered by Google

scikit-learn

Machine Learning in Python

- · Simple and efficient tools for data mining and data analysis
- · Accessible to everybody, and reusable in various contexts
- · Built on NumPy, SciPy, and matplotlib
- · Open source, commercially usable BSD license

Classification

Identifying to which category an object belongs to.

Applications: Spam detection, Image recognition.

Algorithms: SVM, nearest neighbors, random forest, ... — Examples

Regression

Predicting a continuous-valued attribute associated with an object.

Applications: Drug response, Stock prices. **Algorithms**: SVR, ridge regression, Lasso, ...

Examples

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping experiment outcomes

Algorithms: k-Means, spectral clustering,

mean-shift, ... — Examples

Dimensionality reduction

Reducing the number of random variables to consider.

Applications: Visualization, Increased efficiency

Model selection

Comparing, validating and choosing parameters and models.

Goal: Improved accuracy via parameter tuning

http://scikit-learn.org/

Preprocessing

Feature extraction and normalization.

Application: Transforming input data such as text for use with machine learning algorithms. **Modules**: preprocessing, feature extraction.

http://nlp.stanford.edu/software/index.shtml

The Stanford Natural Language Processing Group

home · people · teaching · research · publications · software · events · local

The Stanford NLP Group makes parts of our Natural Language Processing software available to everyone. These are statistical NLP toolkits for various major computational linguistics problems. They can be incorporated into applications with human language technology needs.

All the software we distribute here is written in Java. All recent distributions require Oracle Java 6+ or OpenJDK 7+. Distribution packages include components for command-line invocation, jar files, a Java API, and source code. A number of helpful people have extended our work with bindings or translations for other languages. As a result, much of this software can also easily be used from Python (or Jython), Ruby, Perl, Javascript, and F# or other .NET languages.

Supported software distributions

This code is being developed, and we try to answer questions and fix bugs on a besteffort basis.

All these software distributions are open source, **licensed under the GNU General Public License** (v2 or later). Note that this is the *full* GPL, which allows many free uses, but *does not allow* its incorporation into any type of distributed proprietary software, even in part or in translation. **Commercial licensing** is also available; please contact us if you are interested.

Stanford CoreNLP

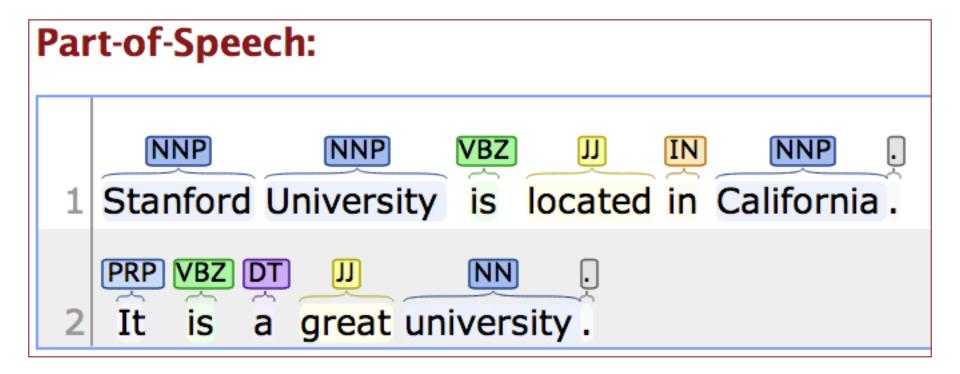
An integrated suite of natural language processing tools for English and (mainland) Chinese in Java, including tokenization, part-of-speech tagging, named entity recognition, parsing, and coreference. See also: Stanford Deterministic Coreference Resolution, and the online CoreNLP demo, and the CoreNLP FAQ.

Stanford Parser

Implementations of probabilistic natural language parsers in Java: highly optimized PCFG and dependency parsers, a lexicalized PCFG parser, and a deep learning reranker. See also: Online parser demo, the Stanford Dependencies page, and Parser FAQ.

Stanford POS Tagger

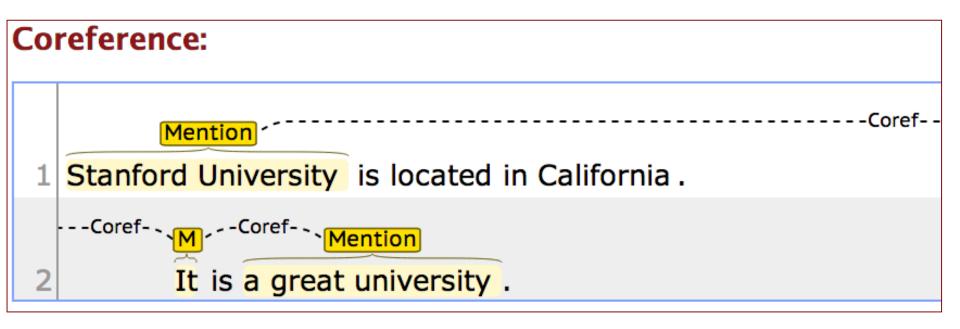
A maximum-entropy (CMM) part-of-speech (POS) tagger for English,


Stanford NLP Software

Stanford CoreNLP http://nlp.stanford.edu:8080/corenlp/process

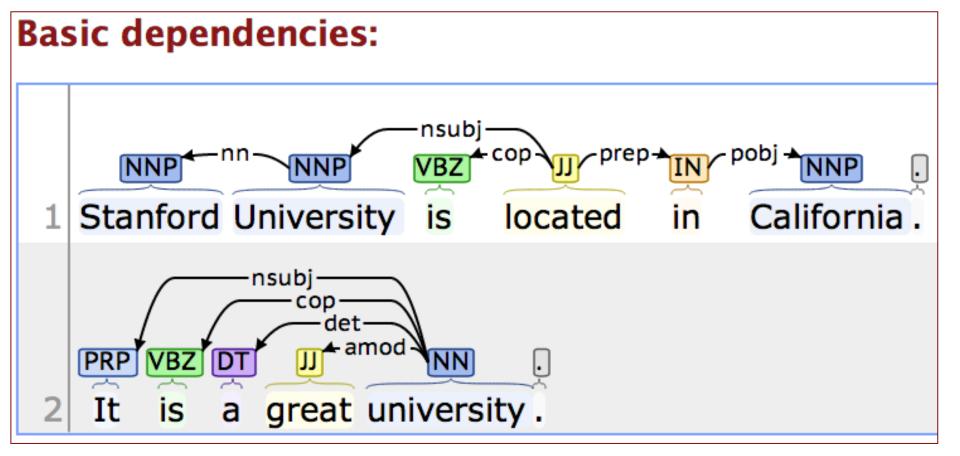
http://nlp.stanford.edu:8080/corenlp/process

Stanford University is located in California. It is a great university.

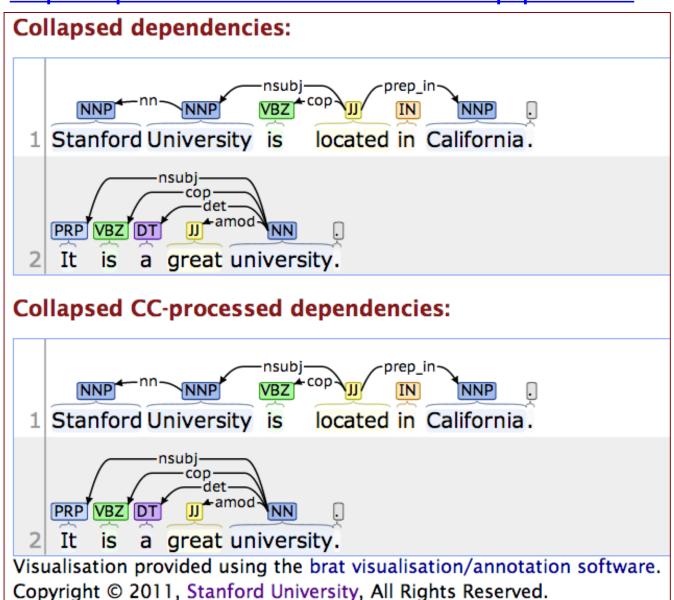

http://nlp.stanford.edu:8080/corenlp/process

Stanford University is located in California. It is a great university.

Organization Stanford University is located in California. It is a great university.


http://nlp.stanford.edu:8080/corenlp/process

Stanford University is located in California. It is a great university.



http://nlp.stanford.edu:8080/corenlp/process

Stanford University is located in California. It is a great university.

http://nlp.stanford.edu:8080/corenlp/process

Output format: Pretty print ‡	
Please enter your text here:	
Stanford University is located in California. It is a great university.	
Submit Clear	

Stanford CoreNLP XML Output

Document **Document Info** Sentences Sentence #1 Tokens Char begin Char end POS Normalized NER Speaker NER Word Lemma 1 Stanford Stanford 8 NNP ORGANIZATION PER0 2 University University 9 NNP ORGANIZATION 19 PER0 3 is be 20 22 VBZ O PER0 4 located located 23 30 PER₀ 5 in 31 33 PER₀ 6 | California | California | 34 NNP LOCATION 44 PER0 45 0 PER0 44 Parse tree (ROOT (S (NP (NNP Stanford) (NNP University)) (VP (VBZ is) (ADJP (JJ located) (PP (IN in) (NP (NNP California))))) (. .)))

http://nlp.stanford.edu:8080/corenlp/process

Stanford University is located in California. It is a great university.

Sentence #1

Tokens

ld	Word	Lemma	Char begin	Char end	POS	NER	Normalized NER	Speaker
1	Stanford	Stanford	0	8	NNP	ORGANIZATION		PER0
2	University	University	9	19	NNP	ORGANIZATION		PER0
3	is	be	20	22	VBZ	0		PER0
4	located	located	23	30	IJ	0		PER0
5	in	in	31	33	IN	0		PER0
6	California	California	34	44	NNP	LOCATION		PER0
7			44	45		0		PER0

Parse tree

(ROOT (S (NP (NNP Stanford) (NNP University)) (VP (VBZ is) (ADJP (JJ located) (PP (IN in) (NP (NNP California))))) (. .)))

http://nlp.stanford.edu:8080/corenlp/process

Stanford University is located in California. It is a great university.

Sentence #2

Tokens

ld	Word	Lemma	Char begin	Char end	POS	NER	Normalized NER	Speaker
1	lt	it	46	48	PRP	0		PER0
2	is	be	49	51	VBZ	0		PER0
3	a	a	52	53	DT	0		PER0
4	great	great	54	59	JJ	0		PER0
5	university	university	60	70	NN	O		PER0
6			70	71		0		PER0

Parse tree

(ROOT (S (NP (PRP It)) (VP (VBZ is) (NP (DT a) (JJ great) (NN university))) (. .)))

http://nlp.stanford.edu:8080/corenlp/process

Stanford University is located in California. It is a great university.

Coreference resolution graph

1.

Sentence	Head	Text	Context
1	2 (gov)	Stanford University	
2	1	lt	
2	5	a great university	

Tokens								
ld	Word	Lemma	Char begin	Char end	POS	NER	Normalized NER	Speaker
1	Stanford	Stanford	0	8	NNP	ORGANIZ	ATION	PER0
2	University	University	9	19	NNP	ORGANIZ	ATION	PER0
3	is	be	20	22	VBZ	Ο	PER0	
4	located	located	23	30	JJ	Ο	PER0	
5	in	in	31	33	IN	Ο	PER0	
6	California	California	34	44	NNP	LOCATIO	N PER0	
7			44	45		0	PFR0	

Parse tree

Tokono

(ROOT (S (NP (NNP Stanford) (NNP University)) (VP (VBZ is) (ADJP (JJ located) (PP (IN in) (NP (NNP California))))) (...)))

Uncollapsed dependencies

```
root (ROOT-0, located-4)
nn (University-2, Stanford-1)
nsubj (located-4, University-2)
cop (located-4, is-3)
prep (located-4, in-5)
pobj (in-5, California-6)
Collapsed dependencies
```

```
root (ROOT-0, located-4)
nn (University-2, Stanford-1)
nsubj (located-4, University-2)
cop (located-4, is-3)
prep_in (located-4, California-6)
Collapsed dependencies with CC processed
```

```
root (ROOT-0, located-4)
nn (University-2, Stanford-1)
nsubj (located-4, University-2)
cop (located-4, is-3)
prep in (located-4, California-6)
```

Stanford CoreNLP

http://nlp.stanford.edu:8080/corenlp/process

Stanford University is located in California. It is a great university.

Output format: XML Please enter your text here: Stanford University is located in California. It is a great university. Submit Clear <?xml version="1.0" encoding="UTF-8"?> <?xml-stylesheet href="CoreNLP-to-HTML.xsl" type="text/xsl"?> <root> <document> <sentences> <sentence id="1"> <tokens> <token id="1"> <word>Stanford</word> <lemma>Stanford</lemma> <CharacterOffsetBegin>0</CharacterOffsetBegin> <CharacterOffsetEnd>8</CharacterOffsetEnd> <POS>NNP</POS> <NER>ORGANIZATION</NER> <Speaker>PERO</Speaker> </token> <token id="2"> <word>University</word> <lemma>University</lemma> <CharacterOffsetBegin>9</CharacterOffsetBegin> <CharacterOffsetEnd>19</CharacterOffsetEnd> <POS>NNP</POS> <NER>ORGANIZATION</NER> <Speaker>PERO</Speaker> </token>

NER for News Article

http://money.cnn.com/2014/05/02/technology/gates-microsoft-stock-sale/index.html

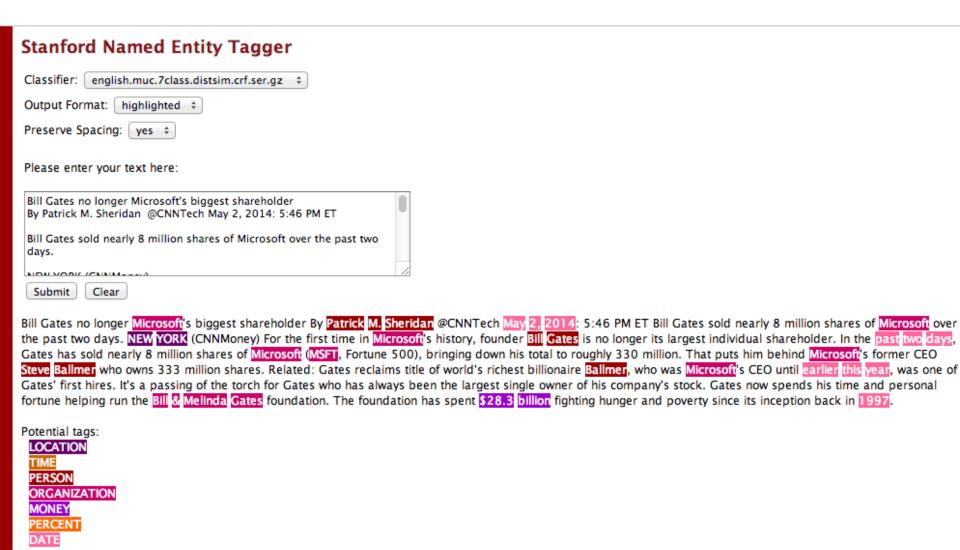
Bill Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET

Bill Gates sold nearly 8 million shares of Microsoft over the past two days.

NEW YORK (CNNMoney)

For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder.

In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million.


That puts him behind Microsoft's former CEO Steve Ballmer who owns 333 million shares.

Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires.

It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation.

The foundation has spent \$28.3 billion fighting hunger and poverty since its inception back in 1997.

http://nlp.stanford.edu:8080/ner/process

Copyright © 2011, Stanford University, All Rights Reserved.

http://nlp.stanford.edu:8080/ner/process

Stanford Named Entity Tagger

Classifier: english.muc.7class.distsim.crf.ser.gz ‡	
Output Format: inlineXML +	
Preserve Spacing: yes ‡	
Please enter your text here:	
Bill Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET	0
Bill Gates sold nearly 8 million shares of Microsoft over the past two days.	
NEW YORK (CHAIN-1994)	1/
Submit Clear	

Bill Gates no longer <ORGANIZATION>Microsoft</ORGANIZATION>'s biggest shareholder By <PERSON>Patrick M. Sheridan</PERSON> @CNNTech <DATE>May 2, 2014</DATE>: 5:46 PM ET Bill Gates sold nearly 8 million shares of <ORGANIZATION>Microsoft</ORGANIZATION> over the past two days. <LOCATION>NEW YORK</LOCATION> (CNNMoney) For the first time in <ORGANIZATION>Microsoft</ORGANIZATION>'s history, founder <PERSON>Bill Gates</PERSON> is no longer its largest individual shareholder. In the <DATE>past two days</DATE>, Gates has sold nearly 8 million shares of <ORGANIZATION>Microsoft</ORGANIZATION>Microsoft</ORGANIZATION>, Fortune 500), bringing down his total to roughly 330 million. That puts him behind <ORGANIZATION>Microsoft</ORGANIZATION>'s former CEO <PERSON>Steve Ballmer</PERSON> who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire <PERSON>Ballmer</PERSON>, who was <ORGANIZATION>Microsoft</ORGANIZATION>'s CEO until <DATE>earlier this year</DATE>, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the <ORGANIZATION>Bill & Melinda Gates</ORGANIZATION> foundation. The foundation has spent <MONEY>\$28.3 billion</MONEY> fighting hunger and poverty since its inception back in <DATE>1997</DATE>.

http://nlp.stanford.edu:8080/ner/process

Stanford Named Entity Tagger

Classifier: english.muc.7class.distsim.crf.ser.gz ‡	
Output Format: xml +	
Preserve Spacing: yes ‡	
Please enter your text here:	
Bill Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET	
Bill Gates sold nearly 8 million shares of Microsoft over the past two days.	
NEW YORK (CNNW)	1/2
Submit Clear	

<wi num="0" entity="0">Bill</wi> <wi num="1" entity="0">Gates</wi> <wi num="2" entity="0">no</wi> <wi num="3" entity="0">longer</wi> <wi num="4" entity="ORGANIZATION">Microsoft</wi><wi num="5" entity="0">&apos:s</wi><wi num="6" entity="0">biggest</wi><wi num="7" entity="0">shareholder</wi><wi num="8" entity="0">By</wi> <wi num="9" entity="PERSON">Patrick</wi> <wi num="10" entity="PERSON">M.</wi> <wi num="11" entity="PERSON">Sheridan</wi> <wi num="12" entity="0">@CNNTech</wi> <wi num="13" entity="DATE">May</wi> <wi num="14" entity="DATE">2</wi><wi num="15" entity="DATE">,</wi> <wi num="16" entity="DATE">2014</wi><wi num="17" entity="0">:</wi> <wi num="18" entity="0">5:46</wi> <wi num="19" entity="0">PM</wi> <wi num="20" entity="0">ET</wi> <wi num="21" entity="0">Bill</wi> <wi num="22" entity="0">Gates</wi> <wi num="23" entity="0">sold</wi> <wi num="24" entity="0">nearly</wi> <wi num="25" entity="0">8</wi> <wi num="26" entity="0">million</wi> <wi num="27" entity="0">shares</wi> <wi num="28" entity="0">of</wi> <wi num="29" entity="0">the</wi> <wi num="31" entity="0">the</wi> <wi num="32" entity="0">past</wi> <wi num="33" entity="0">two</wi> <wi num="34" entity="0">days</wi> <wi num="35" entity="0">,</wi> <wi num="0" entity="LOCATION"> NEW</wi> <wi num="1" entity="LOCATION"> YORK</wi> <wi num="2" entity="0">-LRB-</wi> <wi num="3" entity="0">-CNNMoney</wi> <wi num="4" entity="0">-RRB-</wi> <wi num="5" entity="0">For</wi> <wi num="6" entity="0">the</wi> <wi num="7" entity="0">first</wi> <wi num="8" entity="0">time</wi> <wi num="9" entity="0">in</wi> <wi num="10" entity="0RGANIZATION">Microsoft</wi><wi num="11" entity="0">'s</wi> <wi num="12" entity="0">history</wi><wi num="13" entity="0">.</wi> <wi num="14" entity="0">founder</wi> <wi num="15" entity="PERSON">Bill</wi> <wi num="16" entity="PERSON">Gates</wi> <wi num="17" entity="0">is</wi> <wi num="18" entity="0">no</wi> <wi num="19" entity="0">longer</wi> <wi num="20" entity="0">ity="0 entity="0">largest</wi> <wi num="22" entity="0">individual</wi> <wi num="23" entity="0">shareholder</wi><wi num="24" entity="0">.</wi> <wi num="0" entity="0">In</wi> <wi num="1" entity="0">the</wi> <wi num="2" entity="DATE">past</wi> <wi num="3" entity="DATE">two</wi> <wi num="4" CONTINE OF A LINE OF A

http://nlp.stanford.edu:8080/ner/process

Stanford Named Entity Tagger

Classifier: english.muc.7class.distsim.crf.ser.gz ‡	
Output Format: slashTags +	
Preserve Spacing: yes ‡	
Please enter your text here:	
Bill Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET	0
Bill Gates sold nearly 8 million shares of Microsoft over the past two days.	
Submit Clear	14

Bill/O Gates/O no/O longer/O Microsoft/ORGANIZATION's/O biggest/O shareholder/O By/O Patrick/PERSON M./PERSON Sheridan/PERSON @CNNTech/O May/DATE 2/DATE_1014/DATE_201

http://nlp.stanford.edu:8080/ner/process

Stanford Named Entity Tagger Classifier: english.conll.4class.distsim.crf.ser.gz Output Format: highlighted Preserve Spacing: yes Please enter your text here: Bill Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET Bill Gates sold nearly 8 million shares of Microsoft over the past two days. Submit Clear Bill Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET Bill Gates sold nearly 8 million shares of Microsoft over the past two days. NEW YORK (CNNMoney) For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft's former CEO

Steve Ballmer who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates if it is a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent \$28.3 billion fighting hunger and poverty since its inception back in 1997.

Potential tags:

LOCATION ORGANIZATION PERSON MISC

http://nlp.stanford.edu:8080/ner/process

Stanford Named Entity Tagger

Classifier: english.ali.3class.distsim.crr.ser.gz +	
Output Format: highlighted ‡	
Preserve Spacing: yes ‡	
Please enter your text here:	
Bill Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET	0
Bill Gates sold nearly 8 million shares of Microsoft over the past two days.	
NEW YORK (CANADAGAGA)	//
Submit Clear	
Bill Gates no longer Microsoft's biggest shareholder By Patrick M.	

Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46 PM ET BII Gates sold nearly 8 million shares of Microsoft over the past two days. NEW YORK (CNNMoney) For the first time in Microsoft's history, founder BII Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the BIII Melinda Gates foundation. The foundation has spent \$28.3 billion fighting hunger and poverty since its inception back in 1997.

Potential tags:

LOCATION ORGANIZATION PERSON

Classifier: english.muc.7class.distsim.crf.ser.gz

```
Bill Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46
PM ET Bill Gates sold nearly 8 million shares of Microsoft over the past two days. NEW YORK (CNNMoney)
For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill & Melinda Gates foundation. The foundation has spent $28.3 billion fighting hunger and poverty since its inception back in 1997.
```

Potential tags:

LOCATION
TIME
PERSON
ORGANIZATION
MONEY
PERCENT
DATE

Classifier: english.all.3class.distsim.crf.ser.gz

Gates no longer Microsoft's biggest shareholder By Patrick M. Sheridan @CNNTech May 2, 2014: 5:46
PM ET Bill Gates sold nearly 8 million shares of Microsoft over the past two days. NEW YORK (CNNMoney)
For the first time in Microsoft's history, founder Bill Gates is no longer its largest individual shareholder. In the past two days, Gates has sold nearly 8 million shares of Microsoft (MSFT, Fortune 500), bringing down his total to roughly 330 million. That puts him behind Microsoft's former CEO Steve Ballmer who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire Ballmer, who was Microsoft's CEO until earlier this year, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the Bill Melinda Gates foundation. The foundation has spent \$28.3 billion fighting hunger and poverty since its inception back in 1997.

Potential tags:

LOCATION ORGANIZATION PERSON

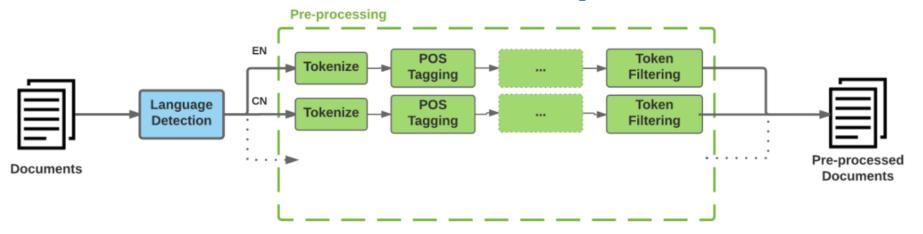
http://nlp.stanford.edu:8080/ner/process

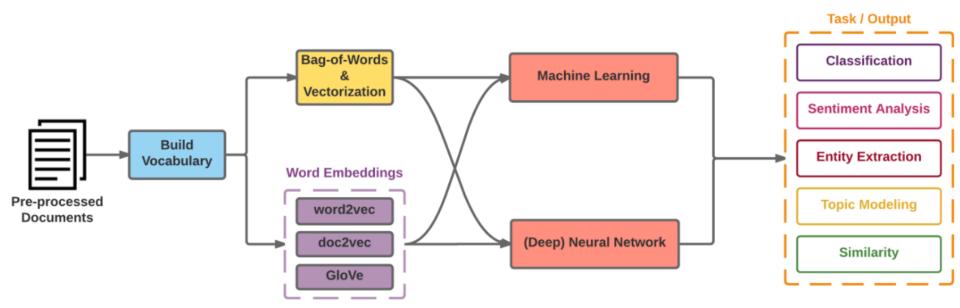
Stanford NER Output Format: inlineXML

Bill Gates no longer <ORGANIZATION>Microsoft</ORGANIZATION>'s biggest shareholder By <PERSON>Patrick M. Sheridan</PERSON> @CNNTech <DATE>May 2, 2014</DATE>: 5:46 PM ET Bill Gates sold nearly 8 million shares of <ORGANIZATION>Microsoft
/ORGANIZATION> over the past two days. <LOCATION>NEW YORK
/LOCATION> (CNNMoney) For the first time in <ORGANIZATION>Microsoft
ORGANIZATION>'s history, founder <PERSON>Bill Gates</PERSON> is no longer its largest individual shareholder. In the <DATE>past two days</DATE>, Gates has sold nearly 8 million shares of <ORGANIZATION>Microsoft</ORGANIZATION> (<ORGANIZATION>MSFT</ORGANIZATION>, Fortune 500), bringing down his total to roughly 330 million. That puts him behind <ORGANIZATION>Microsoft
/ORGANIZATION>'s former CEO <PERSON>Steve Ballmer</PERSON> who owns 333 million shares. Related: Gates reclaims title of world's richest billionaire <PERSON>Ballmer</PERSON>, who was <ORGANIZATION>Microsoft
/ORGANIZATION>'s CEO until <DATE>earlier this year</DATE>, was one of Gates' first hires. It's a passing of the torch for Gates who has always been the largest single owner of his company's stock. Gates now spends his time and personal fortune helping run the <ORGANIZATION>Bill & Melinda Gates</ORGANIZATION> foundation. The foundation has spent <MONEY>\$28.3 billion</MONEY> fighting hunger and poverty since its inception back in <DATE>1997</DATE>.

http://nlp.stanford.edu:8080/ner/process

Stanford NER Output Format: slashTags


Bill/O Gates/O no/O longer/O Microsoft/ORGANIZATION's/O biggest/O shareholder/O By/O Patrick/PERSON M./PERSON Sheridan/PERSON @CNNTech/O May/DATE 2/DATE,/DATE 2014/DATE:/O 5:46/O PM/O ET/O Bill/O Gates/O sold/O nearly/O 8/O million/O shares/O of/O Microsoft/ORGANIZATION over/O the/O past/O two/O days/O./O NEW/LOCATION YORK/LOCATION -LRB-/OCNNMoney/O-RRB-/O For/O the/O first/O time/O in/O Microsoft/ORGANIZATION's/O history/O,/O founder/O Bill/PERSON Gates/PERSON is/O no/O longer/O its/O largest/O individual/O shareholder/O./O In/O the/O past/DATE two/DATE days/DATE,/O Gates/O has/O sold/O nearly/O 8/O million/O shares/O of/O Microsoft/ORGANIZATION -LRB-/OMSFT/ORGANIZATION,/O Fortune/O 500/O-RRB-/O,/O bringing/O down/O his/O total/O to/O roughly/O 330/O million/O./O That/O puts/O him/O behind/O Microsoft/ORGANIZATION's/O former/O CEO/O Steve/PERSON Ballmer/PERSON who/O owns/O 333/O million/O shares/O./O Related/O:/O Gates/O reclaims/O title/O of/O world/O's/O richest/O billionaire/O Ballmer/PERSON,/O who/O was/O Microsoft/ORGANIZATION's/O CEO/O until/O earlier/DATE this/DATE year/DATE,/O was/O one/O of/O Gates/O'/O first/O hires/O./O It/O's/O a/O passing/O of/O the/O torch/O for/O Gates/O who/O has/O always/O been/O the/O largest/O single/O owner/O of/O his/O company/O's/O stock/O./O Gates/O now/O spends/O his/O time/O and/O personal/O fortune/O helping/O run/O the/O Bill/ORGANIZATION &/ORGANIZATION Melinda/ORGANIZATION Gates/ORGANIZATION foundation/O./O The/O foundation/O has/O spent/O \$/MONEY28.3/MONEY billion/MONEY fighting/O hunger/O and/O poverty/O since/O its/O inception/O back/O in/O 1997/DATE./O


Library for NLP

- CKIP
- Jieba
- THULAC
- CoreNLP
- pyLTP
- SnowNLP
- PyNLPIR
- HanLP

Vector Representations of Words Word Embeddings Word2Vec GloVe

Modern NLP Pipeline

Facebook Research FastText

Pre-trained word vectors
Word2Vec
wiki.zh.vec (861MB)
332647 word
300 vec

Pre-trained word vectors for 90 languages, trained on Wikipedia using fastText.

These vectors in dimension 300 were obtained using the skip-gram model with default parameters.

Facebook Research FastText Word2Vec: wiki.zh.vec

(861MB) (332647 word 300 vec)

```
wiki.zh.vec
31845
        yg -0.3978 0.49084 -0.54621 0.078991 0.8584 -0.26163 -0.45787 0.060828 0.36513 -0.03771 0.80791 0.16613 1.4828 -0.89862 0.085965
31846
        迴圈 -0.034834 0.71651 -0.4377 0.48344 0.31117 -0.51783 -0.40156 -0.057097 0.31535 -0.088301 0.23436 0.30884 1.2932 -0.6704 0.21
31847
       ぶっ -0.23267 0.39349 -0.90806 -0.53805 0.59308 -0.31819 -0.64229 0.16871 0.10086 0.09342 1.0914 -0.16019 1.6954 -0.70604 -0.218
        三公 0.54129 0.55641 -0.4348 0.25094 0.1631 -0.10326 -0.54099 0.064742 0.13175 0.10217 0.84938 -0.10287 1.312 -0.74969 0.24025
31849
        水貨 -0.14451 0.80455 -0.6145 0.55905 0.58307 -0.02559 -0.41088 -0.19056 -0.09178 0.33935 1.1927
                                                                                                             Models
31850
        刚才 0.19347 0.553 -0.64736 0.26358 0.83816 -0.24098 -0.83997 -0.16232 -0.024786 -0.2483 0.69732
31851
        無知 -0.0089777 0.90866 -0.25306 0.72983 0.67791 -0.3285 -0.63835 0.075295 0.4774 -0.04134 0.7216
                                                                                                             The models can be downloaded from:
        好轉 -0.026068 0.92676 -0.47469 0.50129 0.67343 -0.32509 -0.32917 0.066499 0.3875 0.0011722 0.663
31853
        紀事 0.40541 0.67654 -0.5351 0.30329 0.43042 -0.24675 -0.19287 0.34207 0.35516 -0.076331 0.85916

    Afrikaans: bin+text, text

31854
        變回 -0.089933 0.88136 -0.43524 0.59963 0.6403 -0.70981 -0.56788 -0.074018 0.16905 -0.086594 0.63
31855
        年尼 -0.26578 0.6434 0.028982 -0.044001 0.88297 -0.17646 -0.64672 0.040483 0.43653 0.084908 0.743

    Albanian: bin+text, text

31856
        埋藏 -0.0985 0.85082 -0.33363 0.24784 0.71518 -0.59054 -0.73731 0.050949 0.36726 -0.076886 0.817

    Arabic: bin+text, text

31857
        正大 0.21069 0.27605 -0.83862 -0.099698 0.47894 -0.32196 -0.38288 -0.01892 0.40548 -0.029619 0.77
                                                                                                              · Armenian: bin+text, text
31858
        kis -0.30595 0.18482 -0.71287 -0.314 0.44776 -0.44245 -0.36447 -0.23723 0.00098801 -0.2528 0.608
31859
        合奏 0.1841 0.60874 -0.51376 -0.48002 0.21506 -0.55515 -0.71746 0.030735 0.39508 -0.40856 0.6226
                                                                                                              · Asturian: bin+text, text
31860
        精兵 0.25619 0.77186 -0.48847 0.23118 0.27254 0.21305 -0.3517 0.47305 0.24882 -0.34756 1.025 0.1

    Azerbaijani: bin+text, text

31861
        疲勞 -0.072521 1.0381 -0.51933 0.19421 0.67573 -0.45204 -0.20126 0.22704 0.44196 0.018401 0.34734
                                                                                                              · Bashkir: bin+text, text
31862
        襯 -0.11771 1.4272 -1.0849 0.77532 0.87026 -0.6892 -0.3521 0.036517 0.42727 -0.1871 0.82789 -0.0
31863
        小貓 -0.21554 0.73988 -0.39628 0.044656 1.0602 -0.67047 -0.54102 0.11888 0.1693 0.19343 1.0841 0
                                                                                                              · Basque: bin+text, text
31864
        lai -0.25451 0.31596 -0.29228 -0.19144 0.99059 -0.24459 -0.66342 0.063093 -0.061142 -0.22749 0.6

    Belarusian: bin+text, text

31865
        偏東 -0.50835 1.0943 0.043918 0.29173 1.0161 -0.32493 -0.27305 0.026946 0.46811 -0.3874 1.4049 0

    Bengali: bin+text, text

31866
        大约是 -0.35726 -0.03476 -0.28672 0.075447 0.18175 -0.39421 -0.32088 0.025225 0.34808 0.074744 0.
31867
        franch -0.6046 -0.3235 0.024041 -0.2756 0.74761 -0.14654 0.0082566 -0.10071 0.53593 -0.17374 0.2
                                                                                                              · Bosnian: bin+text, text
31868
        brazilian -0.54029 -0.63905 -0.094006 -0.68768 0.33263 -0.1583 -0.060424 0.20644 0.46234 -0.0764
                                                                                                              · Breton: bin+text, text
31869
        夹竹桃 -0.4361 0.011429 -0.078896 -0.078186 0.37747 -0.052101 -0.096683 0.10769 0.62661 -0.37252

    Bulgarian: bin+text, text

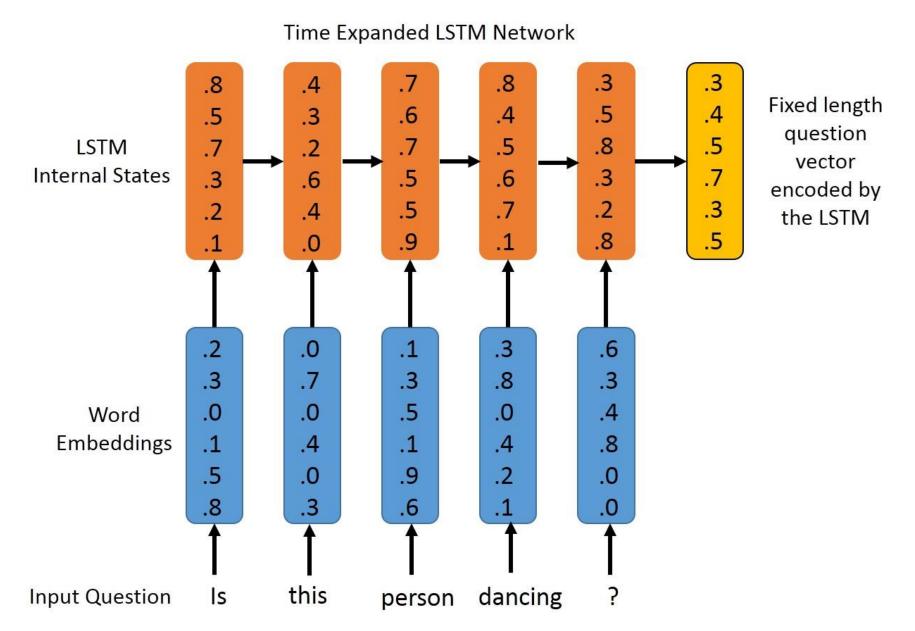
31870
        continent -0.37761 -0.72151 -0.42248 -0.81768 0.5016 -0.48569 0.13464 0.12644 0.32292 0.18099 0.
31871
        我还是 0.097443 0.28929 -0.14202 0.034027 0.50621 -0.1647 -0.45849 -0.16198 0.13965 -0.33451 0.61

    Burmese: bin+text, text

31872
        vienna -0.25827 -0.050966 0.050502 -0.63466 0.4949 -0.17448 -0.59978 0.20269 0.37532 0.059419 0.

    Catalan: bin+text, text

31873
        固态 -0.12678 0.4556 -0.27108 0.12506 0.52106 -0.058477 -0.69296 0.12162 0.26508 -0.089028 0.752
                                                                                                              · Cebuano: bin+text, text
31874
        吉普 -0.33693 0.48335 -0.58455 0.13722 0.74856 -0.24529 -0.41125 -0.13832 0.33871 -0.12051 0.864
31875
        實物 0.030096 0.65756 -0.67982 0.2203 0.38492 -0.19001 -0.53136 -0.10322 0.24523 0.15287 0.92591
                                                                                                              · Chechen: bin+text, text
31876
        教职 0.11559 0.67087 -0.5111 0.14955 0.61417 -0.51571 -0.47901 0.29445 0.37629 -0.24232 0.4608 -(


    Chinese: bin+text text

        惕 0.50469 1.5357 -0.64393 0.48668 0.69479 -0.23443 -0.47863 0.16288 0.3347 -0.51673 0.86777 0.0

    Chuvash: bin+text, text

31878
        岸上 0.088323 0.85815 -0.485 0.30383 0.75965 -0.25031 -0.76678 0.12805 0.37641 -0.088752 0.65012
31879
        议和 0.26835 0.94854 -0.27972 0.097623 0.43305 -0.031361 -0.57406 0.21608 0.3324 -0.36823 0.6987
                                                                                                              · Croatian: bin+text, text
31880
        aka -0.21332 0.11216 -0.48872 -0.18531 0.79093 -0.34221 -0.51122 0.10067 0.29963 -0.075253 0.642
                                                                                                              · Czech: bin+text, text
        滑鐵盧 -0.28726 0.88014 -0.39751 -0.056992 0.37408 -0.16967 -0.20673 -0.048533 -0.1978 -0.13107 0
31881
```

Word Embeddings in LSTM RNN

NLP Tools: spaCy vs. NLTK

	SPACY	SYNTAXNET	NLTK	CORENLP
Easy installation	0	•	0	•
Python API	0	•	•	•
Multi-language support	0	0	•	0
Tokenization	•	0	•	0
Part-of-speech tagging	•	0	•	0
Sentence segmentation	•	0	•	0
Dependency parsing	•	Ð	•	0
Entity Recognition	•	•	•	0
Integrated word vectors	•	•	•	•
Sentiment analysis	•	•	•	0
Coreference resolution	•	•	•	0

Natural Language Processing (NLP) spaCy

- 1. Tokenization
- 2. Part-of-speech tagging
- 3. Sentence segmentation
- 4. Dependency parsing
- 5. Entity Recognition
- 6. Integrated word vectors
- 7. Sentiment analysis
- 8. Coreference resolution

spaCy: Fastest Syntactic Parser

SYSTEM	LANGUAGE	ACCURACY	SPEED (WPS)
spaCy	Cython	91.8	13,963
ClearNLP	Java	91.7	10,271
CoreNLP	Java	89.6	8,602
MATE	Java	92.5	550
Turbo	C++	92.4	349

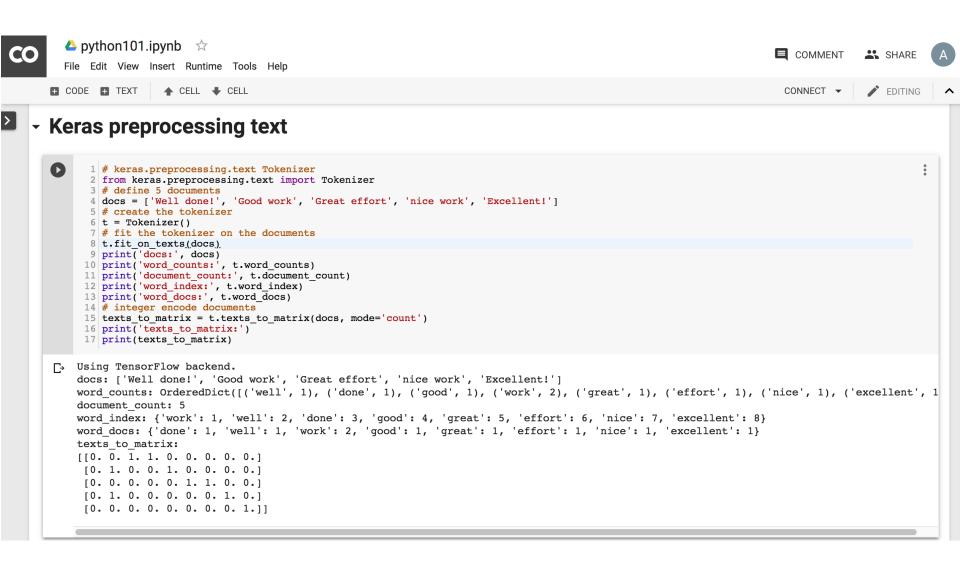
Processing Speed of NLP libraries

	ABSOLU	JTE (MS I	PER DOC)	RELATIVE (TO SPACY)		
SYSTEM	TOKENIZE	TAG	PARSE	TOKENIZE	TAG	PARSE
spaCy	0.2ms	1ms	19ms	1x	1x	1x
CoreNLP	2ms	10ms	49ms	10x	10x	2.6x
ZPar	1ms	8ms	850ms	5x	8x	44.7x
NLTK	4ms	443ms	n/a	20x	443x	n/a

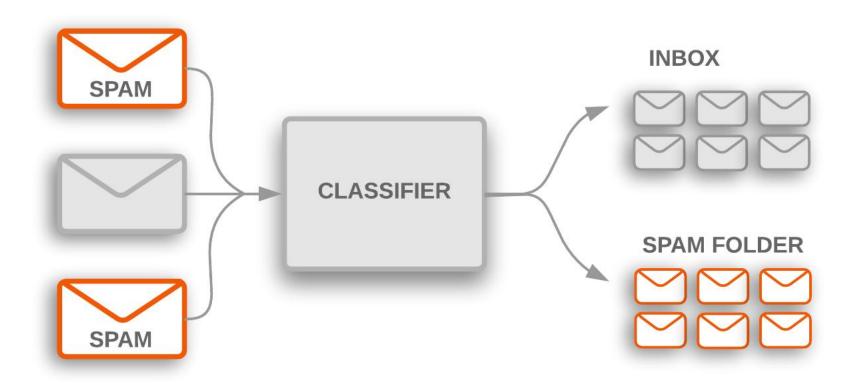
Google SyntaxNet (2016): Best Syntactic Dependency Parsing Accuracy

SYSTEM	NEWS	WEB	QUESTIONS
spaCy	92.8	n/a	n/a
Parsey McParseface	94.15	89.08	94.77
Martins et al. (2013)	93.10	88.23	94.21
Zhang and McDonald (2014)	93.32	88.65	93.37
Weiss et al. (2015)	93.91	89.29	94.17
Andor et al. (2016)	94.44	90.17	95.40

Named Entity Recognition (NER)


SYSTEM	PRECISION	RECALL	F-MEASURE
spaCy	0.7240	0.6514	0.6858
CoreNLP	0.7914	0.7327	0.7609
CoreNLP NLTK	0.7914 0.5136	0.7327 0.6532	0.7609 0.5750

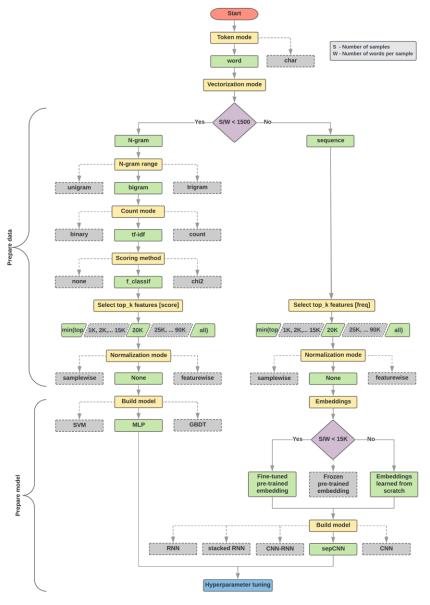
NLP and Text Analytics with Python



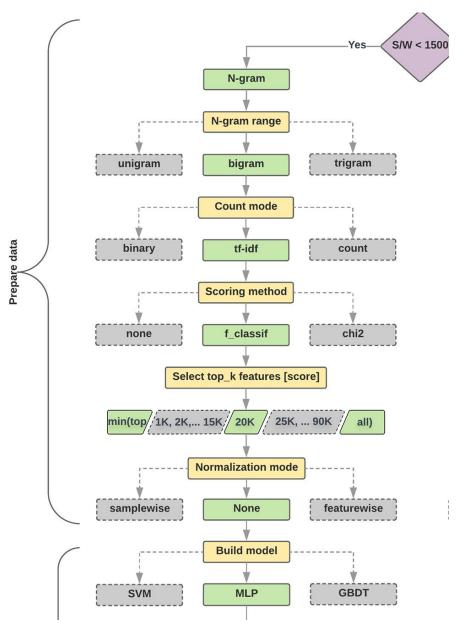
Python in Google Colab

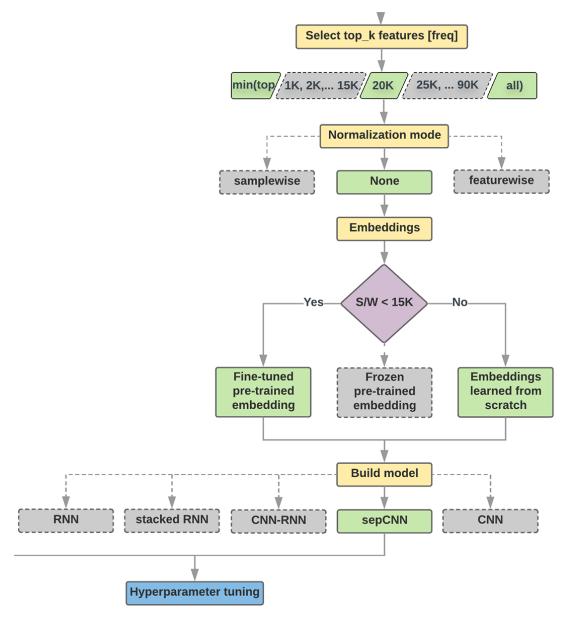
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

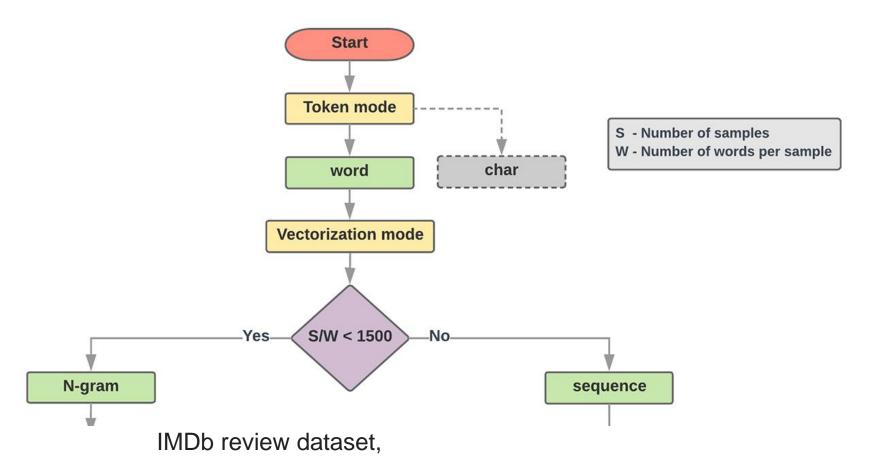
Text Classification



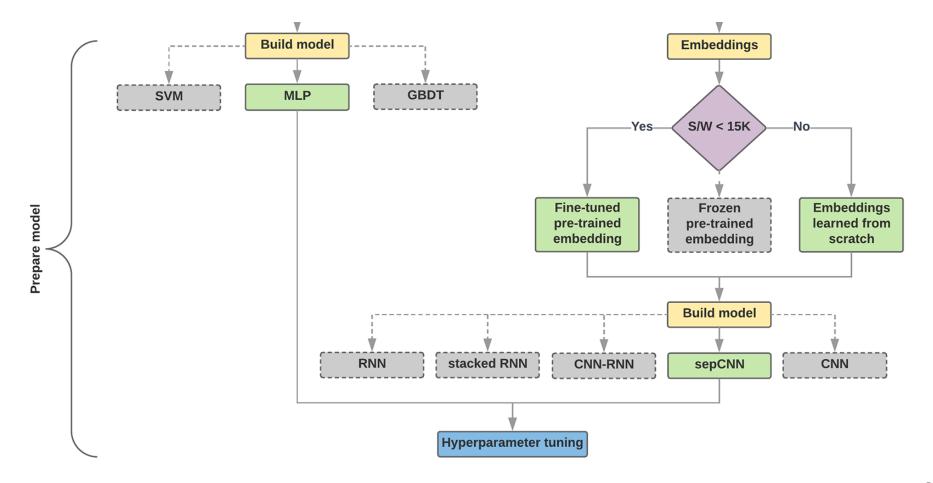
Text Classification Workflow


- Step 1: Gather Data
- Step 2: Explore Your Data
- Step 2.5: Choose a Model*
- Step 3: Prepare Your Data
- Step 4: Build, Train, and Evaluate Your Model
- Step 5: Tune Hyperparameters
- Step 6: Deploy Your Model


Text Classification Flowchart


Text Classification S/W<1500: N-gram

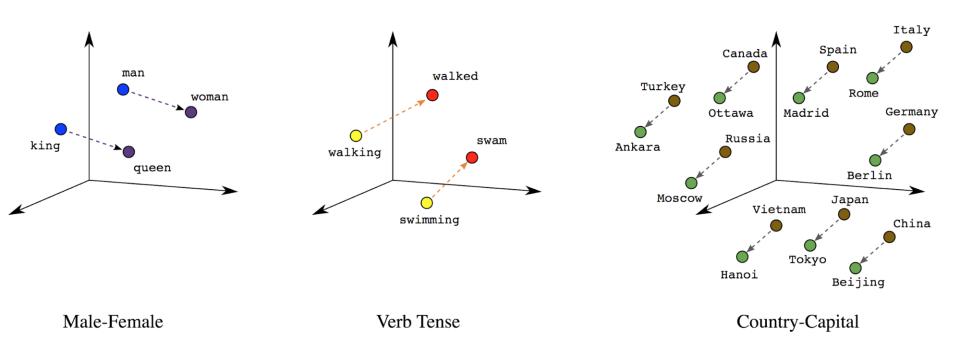
Text Classification S/W>=1500: Sequence



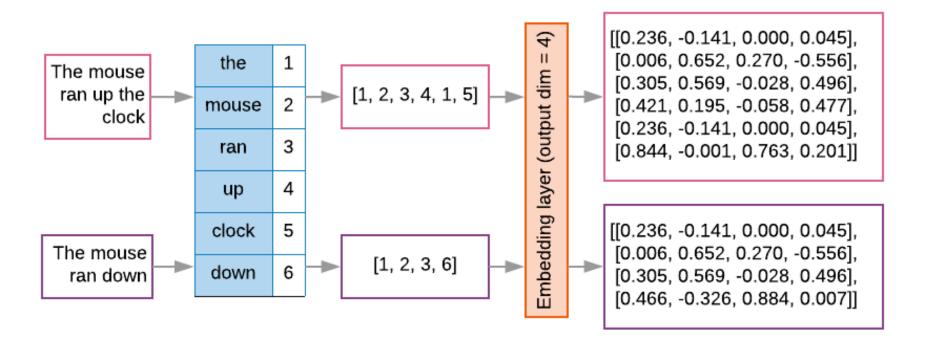
Step 2.5: Choose a Model Samples/Words < 1500 150,000/100 = 1500

the samples/words-per-sample ratio is ~ 144

Step 2.5: Choose a Model Samples/Words < 15,000 1,500,000/100 = 15,000


Step 3: Prepare Your Data

```
Texts:
T1: 'The mouse ran up the clock'
T2: 'The mouse ran down'
Token Index:
{'the': 1, 'mouse': 2, 'ran': 3, 'up': 4, 'clock': 5, 'down': 6,}.
   NOTE: 'the' occurs most frequently,
         so the index value of 1 is assigned to it.
         Some libraries reserve index 0 for unknown tokens,
         as is the case here.
Sequence of token indexes:
T1: 'The mouse ran up the clock' =
       [1, 2, 3, 4, 1, 5]
T1: 'The mouse ran down' =
       [1, 2, 3, 6]
```


One-hot encoding

```
'The mouse ran up the clock' =
             [0, 1, 0, 0, 0, 0, 0],
The
               [0, 0, 1, 0, 0, 0, 0],
mouse
               [0, 0, 0, 1, 0, 0, 0],
ran
               [0, 0, 0, 0, 1, 0, 0],
up
               [0, 1, 0, 0, 0, 0, 0],
the
               [0, 0, 0, 0, 0, 1, 0]
clock
               [0, 1, 2, 3, 4, 5, 6]
```

Word embeddings

Word embeddings


```
t1 = 'The mouse ran up the clock'
t2 = 'The mouse ran down'
s1 = t1.lower().split(' ')
s2 = t2.lower().split(' ')
terms = s1 + s2
sortedset = sorted(set(terms))
print('terms =', terms)
print('sortedset =', sortedset)
```

```
1 t1 = 'The mouse ran up the clock'
2 t2 = 'The mouse ran down'
3 s1 = t1.lower().split(' ')
4 s2 = t2.lower().split(' ')
5 terms = s1 + s2
6 sortedset = sorted(set(terms))
7 print('terms =', terms)
8 print('sortedset =', sortedset)
```

terms = ['the', 'mouse', 'ran', 'up', 'the', 'clock', 'the', 'mouse', 'ran', 'down']

sortedset = ['clock', 'down', 'mouse', 'ran', 'the', 'up']

```
t1 = 'The mouse ran up the clock'
t2 = 'The mouse ran down'
s1 = t1.lower().split(' ')
s2 = t2.lower().split(' ')
terms = s1 + s2
print(terms)
tfdict = {}
for term in terms:
    if term not in tfdict:
        tfdict[term] = 1
    else:
        tfdict[term] += 1
a = []
for k,v in tfdict.items():
    a.append('{}, {}'.format(k,v))
print(a)
```

```
['the', 'mouse', 'ran', 'up', 'the', 'clock', 'the', 'mouse', 'ran', 'down']
['the, 3', 'mouse, 2', 'ran, 2', 'up, 1', 'clock, 1', 'down, 1']
```

```
sorted by value reverse = sorted(tfdict.items(),
key=lambda kv: kv[1], reverse=True)
sorted by value reverse dict =
dict(sorted by value reverse)
id2word = {id: word for id, word in
enumerate (sorted by value reverse dict) }
word2id = dict([(v, k) for (k, v) in
id2word.items()])
sorted by value: [('up', 1), ('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3)]
sorted by value2: ['the', 'mouse', 'ran', 'up', 'clock', 'down']
sorted by value reverse: [('the', 3), ('mouse', 2), ('ran', 2), ('up', 1), ('clock', 1), ('down', 1)]
sorted by value reverse dict {'the': 3, 'mouse': 2, 'ran': 2, 'up': 1, 'clock': 1, 'down': 1}
id2word {0: 'the', 1: 'mouse', 2: 'ran', 3: 'up', 4: 'clock', 5: 'down'}
word2id { 'the': 0, 'mouse': 1, 'ran': 2, 'up': 3, 'clock': 4, 'down': 5}
len words: 6
sorted by key: [('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3), ('up', 1)]
the, 3
mouse, 2
ran, 2
up, 1
clock, 1
down, 1
```

```
sorted by value = sorted(tfdict.items(), key=lambda kv: kv[1])
print('sorted by value: ', sorted by value)
sorted by value2 = sorted(tfdict, key=tfdict.get, reverse=True)
print('sorted by value2: ', sorted by value2)
sorted by value reverse = sorted(tfdict.items(), key=lambda kv: kv[1], reverse=True)
print('sorted by value reverse: ', sorted by value reverse)
sorted by value reverse dict = dict(sorted by value reverse)
print('sorted by value reverse dict', sorted by value reverse dict)
id2word = {id: word for id, word in enumerate(sorted by value reverse dict)}
print('id2word', id2word)
word2id = dict([(v, k) for (k, v) in id2word.items()])
print('word2id', word2id)
print('len words:', len(word2id))
sorted by key = sorted(tfdict.items(), key=lambda kv: kv[0])
print('sorted by key: ', sorted by key)
tfstring = '\n'.join(a)
print(tfstring)
tf = tfdict.get('mouse')
print(tf)
sorted by value: [('up', 1), ('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3)]
sorted by value2: ['the', 'mouse', 'ran', 'up', 'clock', 'down']
sorted by value reverse: [('the', 3), ('mouse', 2), ('ran', 2), ('up', 1), ('clock', 1), ('down', 1)]
sorted by value reverse dict { 'the': 3, 'mouse': 2, 'ran': 2, 'up': 1, 'clock': 1, 'down': 1}
id2word {0: 'the', 1: 'mouse', 2: 'ran', 3: 'up', 4: 'clock', 5: 'down'}
word2id { 'the': 0, 'mouse': 1, 'ran': 2, 'up': 3, 'clock': 4, 'down': 5}
len words: 6
sorted by key: [('clock', 1), ('down', 1), ('mouse', 2), ('ran', 2), ('the', 3), ('up', 1)]
the, 3
mouse, 2
ran, 2
up, 1
clock, 1
down, 1
```

from

keras.preprocessing.text import Tokenizer

```
1 from keras.preprocessing.text import Tokenizer
 2 # define 5 documents
 3 docs = ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
 4 # create the tokenizer
 5 t = Tokenizer()
 6 # fit the tokenizer on the documents
 7 t.fit on texts(docs)
 8 print('docs:', docs)
 9 print('word counts:', t.word counts)
10 print('document count:', t.document count)
11 print('word index:', t.word index)
12 print('word docs:', t.word docs)
13 # integer encode documents
14 texts to matrix = t.texts to matrix(docs, mode='count')
15 print('texts to matrix:')
16 print(texts to matrix)
docs: ['Well done!', 'Good work', 'Great effort', 'nice work', 'Excellent!']
word counts: OrderedDict([('well', 1), ('done', 1), ('good', 1), ('work', 2), ('great', 1), ('effort', 1), ('nj
document count: 5
word index: {'work': 1, 'well': 2, 'done': 3, 'good': 4, 'great': 5, 'effort': 6, 'nice': 7, 'excellent': 8}
word docs: {'done': 1, 'well': 1, 'work': 2, 'good': 1, 'great': 1, 'effort': 1, 'nice': 1, 'excellent': 1}
texts to matrix:
[[0. 0. 1. 1. 0. 0. 0. 0. 0.]
[0. 1. 0. 0. 1. 0. 0. 0. 0.]
[0. 0. 0. 0. 0. 1. 1. 0. 0.]
[0. 1. 0. 0. 0. 0. 0. 1. 0.]
[0. 0. 0. 0. 0. 0. 0. 0. 1.]]
```

from

keras.preprocessing.text import Tokenizer

```
from keras.preprocessing.text import Tokenizer
# define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice
work', 'Excellent!']
# create the tokenizer
t = Tokenizer()
# fit the tokenizer on the documents
t.fit on texts(docs)
print('docs:', docs)
print('word counts:', t.word counts)
print('document count:', t.document count)
print('word index:', t.word index)
print('word docs:', t.word docs)
# integer encode documents
texts to matrix = t.texts to matrix(docs, mode='count')
print('texts to matrix:')
print(texts to matrix)
```

texts_to_matrix = t.texts to matrix(docs, mode='count')

```
docs: ['Well done!', 'Good work', 'Great effort',
'nice work', 'Excellent!'
word counts: OrderedDict([('well', 1), ('done', 1),
('good', 1), ('work', 2), ('great', 1), ('effort', 1),
('nice', 1), ('excellent', 1)])
document count: 5
word index: {'work': 1, 'well': 2, 'done': 3, 'good':
4, 'great': 5, 'effort': 6, 'nice': 7, 'excellent': 8}
word docs: {'done': 1, 'well': 1, 'work': 2, 'good': 1,
'great': 1, 'effort': 1, 'nice': 1, 'excellent': 1}
texts to matrix:
[[0. 0. 1. 1. 0. 0. 0. 0. 0.]
 [0. 1. 0. 0. 1. 0. 0. 0. 0.]
 [0. 0. 0. 0. 0. 1. 1. 0. 0.]
 [0. 1. 0. 0. 0. 0. 0. 1. 0.]
 [0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 0. \ 1.]]
```

t.texts to matrix(docs, mode='tfidf')

```
from keras.preprocessing.text import Tokenizer
# define 5 documents
docs = ['Well done!', 'Good work', 'Great effort', 'nice work',
'Excellent!'
# create the tokenizer
t = Tokenizer()
# fit the tokenizer on the documents
t.fit on texts(docs)
print('docs:', docs)
print('word counts:', t.word counts)
print('document count:', t.document count)
print('word index:', t.word index)
print('word docs:', t.word docs)
# integer encode documents
texts to matrix = t.texts to matrix(docs, mode='tfidf')
print('texts to matrix:')
print(texts to matrix)
texts to matrix:
[[0. 0. 1.25276297 1.25276297 0. 0. 0. 0. 0. ]
[0. 0.98082925 0. 0. 1.25276297 0. 0. 0. 0. ]
[0. 0. 0. 0. 1.25276297 1.25276297 0. 0. ]
[0. 0.98082925 0. 0. 0. 0. 0. 1.25276297 0. ]
```

[0. 0. 0. 0. 0. 0. 0. 1.25276297]]

NLTK (Natural Language Toolkit)

NLTK 3.0 documentation

NEXT | MODULES | INDEX

Natural Language Toolkit

NLTK is a leading platform for building Python programs to work with human language data. It provides easy-to-use interfaces to over 50 corpora and lexical resources such as WordNet, along with a suite of text processing libraries for classification, tokenization, stemming, tagging, parsing, and semantic reasoning, wrappers for industrial-strength NLP libraries, and an active discussion forum.

Thanks to a hands-on guide introducing programming fundamentals alongside topics in computational linguistics, plus comprehensive API documentation, NLTK is suitable for linguists, engineers, students, educators, researchers, and industry users alike. NLTK is available for Windows, Mac OS X, and Linux. Best of all, NLTK is a free, open source, community-driven project.

NLTK has been called "a wonderful tool for teaching, and working in, computational linguistics using Python," and "an amazing library to play with natural language."

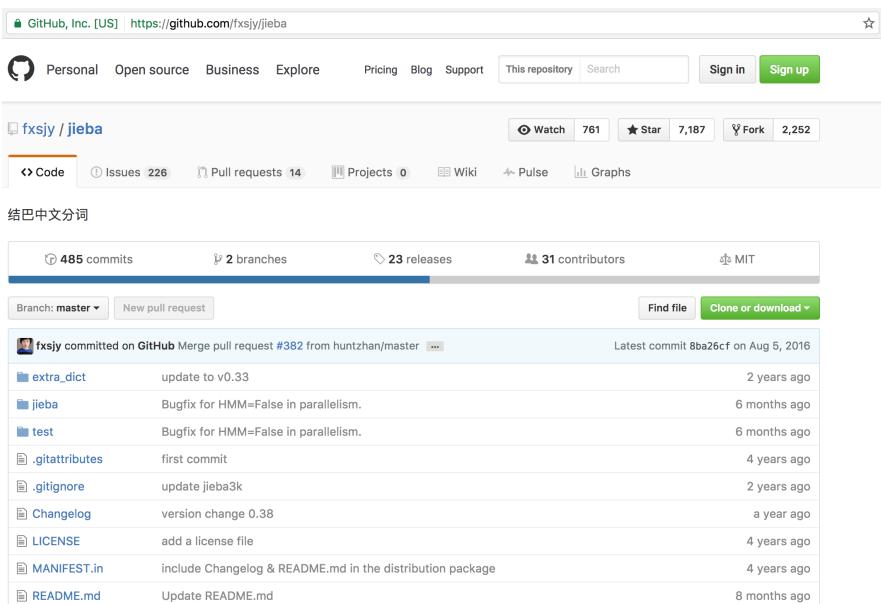
Natural Language Processing with Python provides a practical introduction to programming for language processing. Written by the creators of NLTK, it guides the reader through the fundamentals of writing Python programs, working with corpora, categorizing text, analyzing linguistic structure, and more. The book is being updated for Python 3 and NLTK 3. (The original Python 2 version is still available at http://nltk.org/book_led.)

Some simple things you can do with NLTK

Tokenize and tag some text:

>>> import nltk

TABLE OF CONTENTS


NLTK News
Installing NLTK
Installing NLTK Data
Contribute to NLTK
FAQ
Wiki
API
ноwто

SEARCH

function name.

Enter search terms or a module, class or

Python Jieba

Python Jieba

```
import jieba
import jieba.posseg as pseg
sentence = "銀行產業正在改變,金融機構欲挖角科技人才"
words = jieba.cut(sentence)
print(sentence)
print(" ".join(words))
wordspos = pseg.cut(sentence)
result = ''
for word, pos in wordspos:
    print(word + ' (' + pos + ')')
    result = result + ' ' + word + '(' + pos + ')'
print(result.strip())
```

import jieba words = jieba.cut(sentence)

```
import jieba
import jieba.posseg as pseg
sentence = "銀行產業正在改變,金融機構欲挖角科技人才"
words = jieba.cut(sentence)
print(sentence)
print(" ".join(words)) #銀行 產業 正在 改變 , 金融 機構 欲 挖角 科技人才
wordspos = pseq.cut(sentence)
result = ''
for word, pos in wordspos:
   print(word + ' (' + pos + ')')
   result = result + ' ' + word + '(' + pos + ')'
print(result.strip()) #銀行(n) 產業(n) 正在(t) 改變(v) r(x) 金融(n) 機構(n) 欲(d) 挖角(n) 科技人才(n)
 銀行產業正在改變,金融機構欲挖角科技人才
 銀行 產業 正在 改變 , 金融 機構 欲 挖角 科技人才
 銀行 (n)
 產業 (n)
 正在 (t)
 改變 (v)
 , (x)
 金融 (n)
 機構 (n)
 欲 (d)
 挖角 (n)
 科技人才 (n)
 銀行(n) 產業(n) 正在(t) 改變(v) ,(x) 金融(n) 機構(n) 欲(d) 挖角(n) 科技人才(n)
```


♠ python101.ipynb ☆

File Edit View Insert Runtime Tools Help

```
import jieba
import jieba.posseg as pseg
sentence = "銀行產業正在改變,金融機構欲挖角科技人才"
words = jieba.cut(sentence)
print(sentence)
print(" ".join(words))
wordspos = pseg.cut(sentence)
result = ''
for word, pos in wordspos:
```

print(word + ' (' + pos + ')')
result = result + ' ' + word + '(' + pos + ')'

□→ 銀行產業正在改變,金融機構欲挖角科技人才

12 print(result.strip())

銀行 產業 正在 改變 , 金融 機構 欲 挖角 科技人才

銀行 (n) 產業 (n)

10

正在 (t)

改變 (v)

,(x),

金融 (n)

機構 (n)

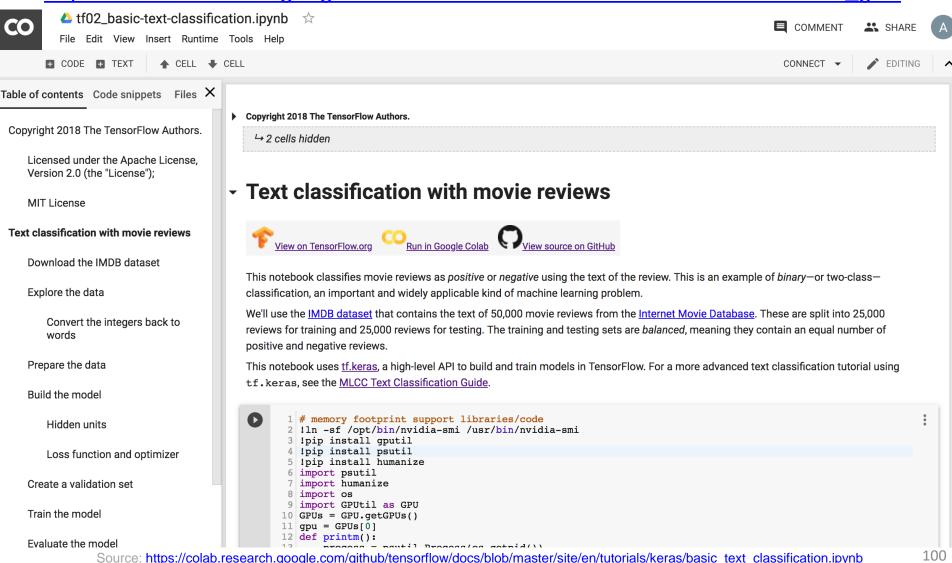
欲 (d)

挖角 (n)

科技人才 (n)

銀行(n) 產業(n) 正在(t) 改變(v) ,(x) 金融(n) 機構(n) 欲(d) 挖角(n) 科技人才(n)

Python Jieba


- https://github.com/fxsjy/jieba
- jieba.set_dictionary('data/dict.txt.big')
 - #/anaconda/lib/python3.5/site-packages/jieba
 - dict.txt (5.4MB)(349,046)
 - dict.txt.big.txt (8.6MB)(584,429)
 - dict.txt.small.txt (1.6MB)(109,750)
 - dict.tw.txt (4.2MB)(308,431)
- https://github.com/ldkrsi/jieba-zh_TW

TensorFlow NLP Examples

- Basic Text Classification (Text Classification) (46 Seconds)
 - https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/ keras/basic_text_classification.ipynb
- NMT with Attention (20-30 minutes)
 - https://colab.research.google.com/github/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/nmt_with_attention/nmt_with_attention.ipynb

Text Classification IMDB Movie Reviews

https://colab.research.google.com/drive/1x16h1GhHsLIrLYtPCvCHaoO1W-i_gror

Summary

- Natural Language Processing (NLP)
- NLP Libraries and Tools
- NLP and Text Analytics with Python

References

- Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson.
- Rajesh Arumugam (2018), Hands-On Natural Language Processing with Python: A practical guide to applying deep learning architectures to your NLP applications, Packt.
- Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805.
- Christopher D. Manning and Hinrich Schütze (1999), Foundations of Statistical Natural Language Processing, The MIT Press.
- Dipanjan Sarkar (2016), Text Analytics with Python: A Practical Real-World Approach to Gaining Actionable Insights from your Data, Apress.
- Jake VanderPlas (2016), Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly Media.
- Steven Bird, Ewan Klein and Edward Loper (2009), Natural Language Processing with Python,
 O'Reilly Media, http://www.nltk.org/book_1ed/
- Nitin Hardeniya (2015), NLTK Essentials, Packt.
- Bing Liu (2009), Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer.