Practical Semantic Web
Programming With AllegroGraph

Mark Watson
Copyright 2008 Mark Watson. All rights reserved.
This work is licensed under a Creative Commons
Attribution-Noncommercial-No Derivative Works
Version 3.0 United States License.

November 24, 2008

Contents

Preface

1.

Introduction

1.1. Whois is this book written for?
1.2. Why is a PDF copy of this book available free on the web?
1.3. Book Software

1.4. Why Graph Data Representations are Better than the Relational Database

Model for Dealing with Rapidly Changing Data Requirements
1.5. Book Summary

AllegroGraph Quick Start

2.1. Starting AllegroGraph L oL

2.2. Working with RDF Data Stores
2.2.1. Creating Repositories
2.2.2. AllegroGraph Lisp Reader SupportforRDF
2.2.3. Adding Triples
2.2.4. Saving Triple Stores to Disk as XML, N-Triples, and N3 . . .

2.3. AllegroGraph Quickstart WrapUp

Semantic Web Technologies

RDF

3.1. RDF Examples in N-Triple and N3 Formats

3.2. The RDF Namespace
32.1. rdfitype
322, rdf:Property

33. RDFWrapUp. e

RDFS
4.1. Extending RDF with RDF Schema
4.2. Modeling withRDFS

RDFS++ and OWL

5.1. Properties Supported InRDFS++
5.1.1. rdfs:subClassOf oL
5.12. rdfsirangeo oL Lo

13

15
16
18
18
19
20

21
21
22

ii

Contents

5.1.3. rdfs:domain oL
5.1.4. rdfs:subPropertyOf
5.1.5. owlsameAs
5.1.6. owlinverseOf
5.1.7. owl:TransitiveProperty
5.2. The SPARQL Query Language

AllegroGraph Extended Tutorial

AllegroGraph’s Extensions to RDF
6.1. ExamplesUseCases,

SPARQL Queries
AllegroGraph Reasoning System

AllegroGraph Prolog Interface

lll. Common Lisp Utilities for Information Processing

10. Entity Extraction from Text

10.1. KnowledgeBooks.com Entity Extraction Library
10.2. Entity Extraction with AllegroGraph Example

11. Automatic Text Tagging

11.1. KnowledgeBooks.com Text Tagging Library
11.2. Text Tagging with AllegroGraph Example

12. Automatically Summarizing Text

12.1. KnowledgeBooks.com Automatic Summarization Library
12.2. Automatic Summarization and AllegroGraph Index/Search Example .

IV. AllegroGraph Application Examples

13.Using Graphviz to Visualize RDF Graphs

14.Using Open Calais with AllegroGraph

14.1. Open Calais Web Services Client
14.2. Storing Entity Data in an RDF Data Store
14.3. Testing the Open Calais Demo System
144.OpenCalaisWrapUp

15.Exporting SPARQL Query Results

iv

31

33
33

35
37
39

41

43
43
43

45
45
45

47
47
47

49
51

53
53
55
57
58

59

Contents

15.1. Exporting to OpenOffice.org Spreadsheets 59
15.2. Exporting to PostgreSQL Databases 59

V. Sample Application: Semantic Web Enabled Web Site 61

16. Requirements and Design of the Semantic Web Portal Web Appli-

cation 63
17.Web Application Back End Implementation 65
18.Web Interface for the Semantic Web Portal 67

18.1. Introduction to AllegroServe 67

18.2. Introduction to Web Actions 67

18.3. Dojo and Javascript for the Web Interface 67

18.4. Web Application Implementation 67
Biliography 69

Contents

vi

List of Figures

1.1. Example Semantic Web Application 2

vii

List of Figures

viii

List of Tables

List of Tables

Preface

This book was written for both professional Common Lisp developers and home
hobbyists who already know how to program in Common Lisp and who want to learn
practical Semantic Web programming techniques using the AllegroGraph libraries
from Franz. Inc.

TBD

Acknowledgements

People who contributed technical ideas for this book

TBD

People who contributed technical edits for this book

TBD

People who contributed copy edits to the material for this book

Carol Watson

X1

Preface

xii

1. Introduction

1.1. Who is is this book written for?

There are many books on the Semantic Web and good tutorials and software on the
web. However, there is not a single reference for Common Lisp developers who
want to use AllegroGraph for development using technologies like RDF/RDFS/OWL
modeling, descriptive logic reasoners, and the SPARQL query language.

If you own a Franz Lisp and AllegroGraph development license, then you are set to
go, as far as using this book. If not, you need to download and install a free non-
commercial use licensed copy at:

http://www.franz.com/downloads/clp/agle_survey

Franz Inc. has provided support for my writing this book in the form of technical re-
views and my understanding is that even though you will need to periodically refresh
your free non-commercial license, there is no inherent time limit for non-commercial
use.

1.2. Why is a PDF copy of this book available free
on the web?

As an author I want to both earn a living writing and have many people read and
enjoy my books. By offering for sale the print version of this book I can earn some
money for my efforts and also allow readers who can not afford to buy many books
or may only be interested in a few chapters of this book to read it from my web site.

Please note that I do not give permission to post the PDF version of this book on other
people’s web sites: I consider this to be at least indirectly commercial exploitation in
violation the Creative Commons License that I have chosen for this book.

1. Introduction

Typical Semantic Web Application
5

Information Sources
(web sites, relational

Data to

databases, document RDF Filters RDF Reository
repositories)
1
Application | J--ecoeeiiei RDF/RDFS/OWL
Program APls

Figure 1.1.: Example Semantic Web Application

1.3. Book Software

You can download a large ZIP file containing all code and test data used in this book
from the URL:

http://markwatson.com/opencontent/ag_semantic_web_code.zip

TBD: This file may not be available until January 2009

All the example code is covered by the KnowledgeBooks.com non-commercial use
license for free non-commercial use. If you need to use the book software in a com-
mercial context, a KnowledgeBooks.com commercial use license for all software ex-
amples costs $50 per individual developer with no extra cost for deployment. This
fee can be paid via a PayPal link on the http://markwatson.com/products web page.

The book examples are organized by chapters and each subdirectory combines the
chapter number with some descriptive text.

chapter_02_qguick_start
chapter_06_rdf
chapter_07_sparqgl
chapter_08_reasoning
chapter_09_prolog
chapter_10_entity_extraction
chapter_11_auto_tagging

1.4. Why Graph Data Representations are Better than the Relational Database Model for Dealing w

chapter_12_auto_summarizing
chapter_13_graphviz
chapter_14_freebase
chapter_15_sparqgl_export
chapter_17_web_app_back_end
chapter_18_web_app_front_end
appendix_A_lisp_utilities

1.4. Why Graph Data Representations are Better
than the Relational Database Model for
Dealing with Rapidly Changing Data
Requirements

When people are first introduced to Semantic Web technologies their first reaction is
often something like, “I can just do that with a database.” The relational database
model is an efficient way to express and work with slowly changing data models.
There are some clever tools for dealing with data change requirements in the database
world (ActiveRecord and migrations being a good example) but it is awkward to have
end users and even developers tagging on new data attributes to relational database
tables.

A major theme in this book is convincing you that modeling data with RDF and
RDFS facilitates freely extending data models and also allows fairly easy integration
of data from different sources using different schemas without explicitly converting
data from one schema to another for reuse.

1.5. Book Summary

TBD

1. Introduction

2. AllegroGraph Quick Start

The first section of this book will cover Semantic Web technologies from a theoretical
and reference point of view. While covering the theory it will be useful to provide
some concrete examples using AllegroGraph so this book is organized in layers:

1. Quick introduction to AllegroGraph.
2. Theory (with some AllegroGraph short examples).
3. Detailed treatment of AllegroGraph APIs.

4. Development of Useful Common Lisp libraries information processing, data
visualization, and importing Freebase and Open Calais data to an AllegroGraph
RDF store.

5. Development of a complete web portal using Semantic Web technologies.

It will be easier to work through the theory in Chapters 3, 4, and 5 if you understand
the basics of AllegroGraph. After a detailed look theory we will dig deeper into
AllegroGraph development techniques in Chapters 6, 7, 8, and 9.

2.1. Starting AllegroGraph

The code snippets used in this chapter are all contained in the source file chap-
ter:_02_quick_start/quickstart.lisp. I am going to assume that most readers are
trying AllegroGraph using the free non-commercial use version so that is what I
will use here. If you are using a commercially licensed version the examples will
work the same the the initial banner display by alisp (conventional case insensitive
Lisp shell) and mlisp (“modern” case sensitive Lisp shell) will be slightly differ-
ent. While I usually use alisp in my work (I have been using Lisp for professional
development since 1982), Franz recommends using mlisp for AllegroGraph devel-
opment so we will use mlisp in this book. You will need to following the directions
in acl81_express/readme.txt t build a mlisp image to use. When showing interactive
examples in this chapter I remove some Lisp shell messages so when you work along
with these examples expect to see more output than what is shown here:

myMacBook:acl81_express markw$./mlisp

2. AllegroGraph Quick Start

International Allegro CL Free Express Edition

8.1 [Mac OS X (Intel)] (Nov 18, 2008 10:59)

Copyright (C) 1985-2007, Franz Inc., Oakland, CA, USA.
All Rights Reserved.

This development copy of Allegro CL is licensed to:
Trial User

;; Current reader case mode: :case-sensitive-lower

cl-user(l): (require :agraph)

AllegroGraph 3.0.1 [built on July 07, 2008]

t

cl-user (2): (in-package :db.agraph.user)

#<The db.agraph.user package>

triple-store-user (3):

Here I required the :agraph package and changed the current Common Lisp package
to db.agraph.user. In examples later in this book when we develop complete appli-
cation exaples we will be using our own application-specific packages and I will show
you then what you need in general to import from db.agraph and db.agraph.user.
We will continue this interactive example Lisp session in the following sections.

2.2. Working with RDF Data Stores

RDF data stores provide the services for storing RDF triple data and providing some
means of making queries to identify some subset of the triples in the store. I think
that it is important to keep in mind that the mechanism for maintaining triple stores
varies in different implementations. Triples can be stored in memory, in disk-based
btree stores like BerkeleyDB, in relational databases, and in custom stores like Alle-
groGraph. While much of this book is specific to Common Lisp and AllegroGraph
the concepts that you will learn and experiment with can be useful if you also use
other languages and platforms like Java (Sesame, Jena, OwWlAPIs, etc.), Ruby (Red-
land RDF), etc. For Java developers Franz offers a Java version of AllegroGraph
(implemented in Lisp with a network interface).

2.2.1. Creating Repositories

AllegroGraph uses disk-based RDF storage with automatic in-memory caching. For
the examples in this book I will assume that all RDF stores are kept in the temporary
directory /tmp. For deployed systems you will clearly want to use a permanent lo-
cation. For Windows(tm) development you can either change this location or create

2.2. Working with RDF Data Stores

a new directory in c:\temp. In the examples in this book, I assume a Mac OS X,
Linux, or other Unix type file system:

triple-store-user (3): (create-triple-store
"/tmp/rdfstore_1")
#<db.agraph::triple-db /tmp/rdfstore_1, open @ #x109682>

While it is possible to work with multiple repositories (and this is well documented
in Franz’s online documentation) for all of the tutorials, examples, and sample appli-
cations in this book we need just a single open repository.

We will see in Chapter 3 how to partition RDF triples into different namespaces and to
use existing RDF data and schemas in different namespaces. For now, I introduce the
AllegroGraph APIs for defining new namespaces and listing all namespaces defined
in the current repository:

triple-store-user(4): (register-namespace "kb"
"http://knowledgebooks.com/rdfs#")

"http://knowledgebooks.com/rdfs#"

triple-store-user(5): (display-namespaces)

rdfs => http://www.w3.0rg/2000/01/rdf-schema#

err => http://www.w3.0rg/2005/xgqt-errors#

fn => http://www.w3.0rg/2005/xpath-functions#

rdf => http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#

xs => http://www.w3.0rg/2001/XMLSchema#

xsd => http://www.w3.0rg/2001/XMLSchema#

owl => http://www.w3.0rg/2002/07/owl#

kb => http://knowledgebooks.com/rdfs#

Here I created a new name space that has an abbreviation (or nickname) kb: and
then printed out all registered namespaces. To insure data integrity be sure to call
(close-triple-store) to close an RDF triple store when you are done with it.

2.2.2. AllegroGraph Lisp Reader Support for RDF

In general, the subject, predicate, and object parts of an RDF triple can be either URIs
or literals.

AllegroGraph provides a Lisp reader macro ! that makes it easier to enter URIs and
literals. For example, the following two URIs are functionally equivalent given the
(register-namespace ‘“kb” ...) in the last section:

2. AllegroGraph Quick Start

I<http://knowledgebooks.com/rdfs#containsPerson>
'kb: containsPerson

String literals are also defined using the ! reader macro; for example:

!"Barack Obama"
I"101 Main Street"

2.2.3. Adding Triples

A triple consists of a subject, predicate, and object. We refer to these three values as
symbols :s, :p, and :0. We saw the use of literals with the ! Lisp reader macro in the
last section. If we need to refer to either a subject, predicate, or object as a web URI
then we use the function resource:

triple-store-user (15): (resource "http://demo_news/12931")
!<http://demo_news/12931>
triple-store-user (16): (defvar *demo—articlex

(resource

"http://demo_news/12931"))

xdemo—-articlex
triple-store-user(l7): xdemo-articlex
!<http://demo_news/12931>

The function add-triple takes three arguments for the subject, predicate, and object
in a triple:

triple-store-user(18): (add-triple xdemo-articlex
'rdf:type
'kb:article)

1

triple-store-user(19): (add-triple xdemo-articlex
'kb:containsPerson
!"Barack Obama")

We used a combination of a generated resource, two predicates defined in the rdf: and
kb: namespaces, and a string literal to define two triples. Triples in an AllegroGraph
RDF store can be identified by a unique ID; this ID value is returned as the value of
calling add-triple and can be used to fetch a triple:

2.2. Working with RDF Data Stores

triple-store-user (20): (get-triple-by-id 2)

<12931 containsPerson Barack Obama>

triple-store-user(21l): (defvar *triplex
(get-triple-by-id 2))

*triplex

triple-store-user (22): xtriplex

We will seldom access triples by ID — shortly we will see how to query a RDF store to
find triples. The function print-triple can be used to print a short form of a triple and
also by adding the arguments :format :concise we can print a triple in the NTriple
format:

<12931 containsPerson Barack Obama>
triple-store-user (23): (print-triple x*triplex
:format :concise)
<4: http://demo_news/12931 kb:containsPerson
Barack Obama>

<12931 containsPerson Barack Obama>

triple-store-user(24): (print-triple x*triplex)

<http://demo_news/12931>
<http://knowledgebooks.com/rdfs#containsPerson>
"Barack Obama"

<12931 containsPerson Barack Obama>

Function print-triple prints a triple to standard output and returns the triple value
in the short notation. We will see in later chapters how to create something like a
database cursor for iterating through multiple triples that we find by querying a triple
store. For now we will use query function get-triples that returns all triples matching
a query in a list. The utility function print-triples prints all triples in a list:

triple-store-user (27): (print-triples (list xtriplex))

<http://demo_news/12931>
<http://knowledgebooks.com/rdfs#containsPerson>
"Barack Obama"

triple-store-user(28): (print-triples (get-triples))

<http://demo_news/12931>
<http://www.w3.0rg/1999/02/22-rdf-syntax—ns#type>
<http://knowledgebooks.com/rdfs#article>

<http://demo_news/12931>
<http://knowledgebooks.com/rdfs#containsPerson>
"Barack Obama"

When get-triples is called with no arguments it simple returns all triples in a data
store. We can specify query matching values for any combination of :s, :p, and :o.

2. AllegroGraph Quick Start

We can look at all triples that have their subject equal to the resource we created for
the demo article:

triple-store-user(31l): (print-triples
(get-triples :s xdemo-articlex))
<http://demo_news/12931>
<http://www.w3.0rg/1999/02/22-rdf-syntax—-ns#type>
<http://knowledgebooks.com/rdfs#article>
<http://demo_news/12931>
<http://knowledgebooks.com/rdfs#containsPerson>
"Barack Obama"

We can limit query results further; in this case we add the condition that the object
must equal the value of the type !kb:article:

triple-store-user(33): (print-triples
(get-triples :s xdemo-articlex
:o0 l!'kb:article))
<http://demo_news/12931>
<http://www.w3.0rg/1999/02/22-rdf-syntax—ns#type>
<http://knowledgebooks.com/rdfs#article>

I often need to manually reformat program example text and example program output
in this book. The last three lines in the last example would appear on a single line if
you are following along with these tutorial examples in a Lisp listener (as you should
be!). In any case RDF triple data in the NTriple format that we are using here is
free-format: a triple is defined by three tokens (each with no embedded whitespace
unless inside a string literal) and ended with a period character.

2.2.4. Saving Triple Stores to Disk as XML, N-Triples, and
N3

It is often useful to copy either all triples in data store or triples matching a query out
to a flat disk file in NTriples format:

(with-open-file (output "/tmp/sample.ntriple"
:direction :output
:if-does-not-exist :create)
(print-triples (get-triples)
:stream output :format :ntriple))

2.3. AllegroGraph Quickstart Wrap Up

Output in the file might look like:

<http://demo_news/12931>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://knowledgebooks.com/rdfsf#article>
<http://demo_news/12931>
<http://knowledgebooks.com/rdfs#containsPerson>
"Barack Obama"

Here we see two triples in NTriple format. In most applications the RDF data store
will be persistent and reused over multiple application restarts. While the disk based
triple store is persistent for many applications it is a good idea to support export-
ing triples in a standard format line the NTriple format that we use here, the XML
serialization format, or the newer and more compact N3 format.

2.3. AllegroGraph Quickstart Wrap Up

This short chapter gave you a brief introduction to running AllegroGraph interac-
tively and some of the APIs that you will be using most frequently. The next section
of this book is a largely Allegroraph independent introduction to Semantic Web tech-
nologies. If you take a while to interactively experiment with AllegroGraph before
continuing to read this book then the discusion in the next three chapters may seem
more “grounded” for you.

11

2. AllegroGraph Quick Start

Part I.

Semantic Web Technologies

3. RDF

The Semantic Web is intended to provide a massive linked set of data for use by
software systems just as the World Wide Web provides a massive collection of linked
web pages for human reading and browsing. The Semantic Web is like the web
in that anyone can generate any content that they want. This freedom to publish
anything works for the web because we use our ability to understand natural language
to interpret what we read — and often to dismiss material that based upon our own
knowledge we consider to be incorrect.

The core concept for the Semantic Web is data integration and use from different
sources. As we will soon see, the tools for implementing the Semantic Web are
designed for encoding data and sharing data from many different sources.

The Resource Description Framework (RDF) is used to encode information and the
RDF Schema (RDFS) facilitates using data with different RDF encodings without the
need to convert data formats.

RDF data was originally encoded as XML and intended for automated processing.
In this chapter we will use two simple to read formats called “N-Triples” and “N3.”
There are many tools available that can be used to convert between all RDF formats
so we might as well use formats that are easier to read and understand. RDF data
consists of a set of triple values:

e subject
e predicate

e object

You have probably read articles and other books on the Semantic Web, and if so,
you are probably used to seeing RDF expressed in its XML serialization format: you
will not see XML serialization in this book. Much of my own confusion when I
was starting to use Semantic Web technologies was directly caused by trying to think
about RDF in XML form. A waste of time, really, when either N-Triple or even
better, N3 are so much easier to read and understand.

Some of my work with Semantic Web technologies deals with processing news sto-
ries, extracting semantic information from the text, and storing it in RDF. I will use
this application domain for the examples in this chapter. I deal with triples like:

15

3. RDF

e subject: a URL (or URI) of a news article
e predicate: a relation like ’containsPerson”

e object: a value like ”Bill Clinton”

As previously mentioned, we will use either URIs or string literals as values for sub-
jects and objects. We will always use URIs for the values of predicates. In any case
URIs are usually preferred to string literals because they are unique. We will see an
example of this preferred use but first we need to learn the N-Triple and N3 RDF
formats.

3.1. RDF Examples in N-Triple and N3 Formats

In the Introduction I proposed the idea that RDF was more flexible than Object Mod-
eling in programming languages, relational databases, and XML with schemas. If we
can tag new attributes on the fly to existing data, how do we prevent what I might call
“data chaos” as we modify existing data sources? It turns out that the solution to this
problem is also the solution for encoding real semantics (or meaning) with data: we
usually use unique URIs for RDF subjects, predicates, and objects, and usually with
a preference for not using string literals. I will try to make this idea more clear with
some examples.

Any part of a triple (subject, predicate, or object) is either a URI or a string literal.
URIs encode namespaces. For example, the containsPerson property is used as the
value of the predicate in this triple; the last example could properly be written as:

http://knowledgebooks.com/ontology/#containsPerson

The first part of this URI is considered to be the namespace for (what we will use as a
predicate) “containsPerson.” When different RDF triples use this same predicate, this
is some assurance to us that all users of this predicate subscribe to the same meaning.
Furthermore, we will see in Section 4.1 we can use RDFS to state equivalency be-
tween this predicate (in the namespace http://knowledgebooks.com/ontology/) with
predicates represented by different URIs used in other data sources. In an “artificial
intelligence” sense, software that we write does not understand a predicate like “con-
tainsPerson” in the way that a human reader can by combining understood common
meanings for the words “contains” and “person” but for many interesting and useful
types of applications that is fine as long as the predicate is used consistently. We
will see shortly that we can define abbreviation prefixes for namespaces which makes
RDF and RDFS files shorter and easier to read.

A statement in N-Triple format consists of three URIs (or string literals — any combi-
nation) followed by a period to end the statement. While statements are often written

3.1. RDF Examples in N-Triple and N3 Formats

one per line in a source file they can be broken across lines; it is the ending period
which marks the end of a statement. The standard file extension for N-Triple format
files is *.nt and the standard format for N3 format files is *.n3.

My preference is to use N-Triple format files as output from programs that I write to
save data as RDF. I often use either command line tools or the Java Sesame library to
convert N-Triple files to N3 if I will be reading them or even hand editing them. You
will see why I prefer the N3 format when we look at an example:

@prefix kb: <http://knowledgebooks.com/ontology#>
<http://news.com/201234 /> kb:containsCountry "China"

Here we see the use of an abbreviation prefix “kb:” for the namespace for my com-
pany KnowledgeBooks.com ontologies. The first term in the RDF statement (the
subject) is the URI of a news article. The second term (the predicate) is “contain-
sCountry” in the “kb:” namespace. The last item in the statement (the object) is a
string literal “China.” I would describe this RDF statement in English as, “The news
article at URI http://news.com/201234 mentions the country China.”

This was a very simple N3 example which we will expand to show additional features
of the N3 notation. As another example, suppose that this news article also mentions
the USA. Instead of adding a whole new statement like this:

@prefix kb: <http://knowledgebooks.com/ontology#>
<http://news.com/201234 /> kb:containsCountry "China"
<http://news.com/201234 /> kb:containsCountry "USA"

we can combine them using N3 notation. N3 allows us to collapse multiple RDF
statements that share the same subject and optionally the same predicate:

@prefix kb: <http://knowledgebooks.com/ontology#>
<http://news.com/201234 /> kb:containsCountry "China" ,
"USA"

We can also add in additional predicates that use the same subject:

@prefix kb: <http://knowledgebooks.com/ontology#>

<http://news.com/201234 /> kb:containsCountry "China" ,
"USA"
kb:containsOrganization "United Nations" ;
kb:containsPerson "Ban Ki-moon" , "Gordon Brown"

17

3. RDF

"Hu Jintao" , "George W. Bush" ,
"Pervez Musharraf" ,

"Vladimir Putin" ,

"Mahmoud Ahmadinejad"

This single N3 statement represents ten individual RDF triples. Each section defining
triples with the same subject and predicate have objects separated by commas and
ending with a period. Please note that whatever RDF storage system we use (we will
be using AllegroGraph) it makes no difference if we load RDF as XML, N-Triple, of
N3 format files: internally subject, predicate, and object triples are stored in the same
way and are used in the same way.

I promised you that the data in RDF data stores was easy to extend. As an example,
let us assume that we have written software that is able to read online news articles
and create RDF data that captures some of the semantics in the articles. If we extend
our program to also recognize dates when the articles are published, we can simply
reprocess articles and for each article add a triple to our RDF data store using the
N-Triple format:

<http://news.com/2034 /> kb:datePublished "2008-05-11"

Furthermore, if we do not have dates for all news articles that is often acceptable
depending on the application.

3.2. The RDF Namespace

You saw a few examples of using namespaces in Chapter 2 where I registered my
own namespace http://knowledgebooks.com/rdfs# and used the AllegroGraph func-
tion (display-namespaces) to display all available namespaces in the currently opened
AllegroGraph data store.

When you register a name space you can assign any “Quick name” (QName, or ab-
breviation) to the URI that uniquely identifies a namespace.

The RDF namespace http://www.w3.0rg/1999/02/22-rdf-syntax-ns# is usually regis-
tered with the QName rdf: and I will use this convention. The next few sections
show the definitions in the RDF namespace that I use in this book.

3.2.1. rdf:type

The rdf:type property is used to specify the type (or class) of a resource. Notice that
we do not capitalize “type” because by convention we do not capitalize RDF property

3.2. The RDF Namespace

names. Using an example from Chapter 2, but in more detail:

(defvar xdemo-articlex
(resource
"http://demo_news/12931"))

(add-triple *demo-articlex
'rdf:type
'kb:article)

Here we are converting the URL of a news web page to a resource and then defining
a new triple that specifies the web page resource is or type kb:article (again, using the
QName kb: for my knowledgebooks.com namespace).

3.2.2. rdf:Property

The rdf:Property class is, as you might guess from its name, used to describe and
define properties. Notice the “Property” is capitalized because by convention we
capitalize RDF class names.

This is a good place to show how we define new properties, using a previous example:

(add-triple xdemo—-articlex
l'kb:containsPerson
!"Barack Obama")

The kb:containsPerson property might be defined using:

(add-triple !'kb:containsPerson
'rdf:type
!rdf :Property)

Here I am using the AllegroGraph APIs for defining triples programatically; the
equivalent definition in N-Triple format is:

kb:containsPerson rdf:type rdf:Property

When we discuss RDF Schema (RDFS) in Chapter 4 we will see how to create sub-
types and sub-properties.

19

3. RDF

3.3. RDF Wrap Up

If you read the World Wide Web Consortium’s RDF Primer (highly recommended)
at http://www.w3.org/TR/REC-rdf-syntax/ you will see many other classes and prop-
erties defined that in my opinion are often most useful when dealing with XML se-
rialization of RDF. Using the N-Triple and N3 formats, I find that I usually just use
rdf:type and rdf:Property in my own modeling efforts, along with a few identifiers
defined in the RDFS namespace that we will look at in the next chapter.

An RDF triple has three parts: a subject, predicate, and object. In later chapters
we will see that AllegroGraph also stores a unique integer triple ID and a graph ID
(for partitioning RDF data and to support graph operations). We will look at these
extensions in some detail in Chapter 6. While using the triple ID and graph ID can
be useful, my own preference is to stick with using just what is in the RDF standard.

By itself, RDF is good for storing and accessing data but lacks functionality for
modeling classes, defining properties, etc. We will extend RDF with RDF Schema
(RDFS) in the next chapter.

20

4. RDFS

The World Wide Web Consortium RDF Schema (RDFS) definition can be read at
http://www.w3.org/TR/rdf-schema/ and I recommend that you use this as a reference
because I will only discuss the parts of RDFS that are required for implementing
the examples in this book. The RDFS namespace http://www.w3.0rg/2000/01/rdf-
schemat# is usually registered with the QName rdf: and I will use this convention.

4.1. Extending RDF with RDF Schema

RDEFS supports the definition of classes and properties based on set inclusion. In
RDFS classes and properties are orthogonal. We will not simply be using properties
to define data attributes for classes — this is different than object modeling and object
oriented programming languages like Java. RDFS is encoded as RDF — the same
syntax.

Because the Semantic Web is intended to be processed automatically by software
systems it is encoded as RDF. There is a problem that must be solved in implementing
and using the Semantic Web: everyone who publishes Semantic Web data is free to
create their own RDF schemas for storing data; for example, there is usually no single
standard RDF schema definition for topics like news stories and stock market data.
Understanding the difficulty of integrating different data sources in different formats
helps to understand the design decisions behind the Semantic Web.

We will start with an example that is an extension of the example in the last section
that also uses RDFS. We add a few additional RDF statements (that are RDFS):

@prefix kb: <http://knowledgebooks.com/ontology#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

kb:containsCity rdfs:subPropertyOf kb:containsPlace
kb:containsCountry rdfs:subPropertyOf kb:containsPlace
kb:containsState rdfs:subPropertyOf kb:containsPlace

The last three lines (that are themselves valid RDF triples) declare that:

21

4. RDFS

e The property containsCity is a subproperty of containsPlace.
e The property containsCountry is a subproperty of containsPlace.

e The property containsState is a subproperty of containsPlace.
Why is this useful? For at least two reasons:

e You can query an RDF data store for all triples that use property containsPlace
and also match triples with property equal to containsCity, containsCountry, or
containsState. There may not even be any triples that explicitly use the property
containsPlace.

e Consider a hypothetical case where you are using two different RDF data stores
that use different properties for naming cities: “cityName” and “city.” You
can define “cityName” to be a subproperty of “city” and then write all queries
against the single property name “city.” This removes the necessity to convert
data from different sources to use the same Schema.

In addition to providing a vocabulary for describing properties and class membership
by properties, RDFS is also used for logical inference to infer new triples, combine
data from different RDF data sources, and to allow effective querying of RDF data
stores. We will see examples of all of these features of RDFS when we start using the
Sesame libraries in the next Chapter in Section 5.2 to perform SPARQL queries.

TBD: more detail

4.2. Modeling with RDFS

While RDFS is not as expressive of a modeling language as the RDFS++ and OWL
languages that we will cover in Chapter 5, it is likely adequate for many semantic
web applications. Reasoning with and using more expressive modeling languages
will require increasingly more processing time. Combined with the simplicity of
RDF and RDFS it is a good idea to start with less expressive and only “move up the
expressivity scale” as needed.

Modeling and reasoning (inferencing) are tightly coupled and we will wait until our
discussion of RDFS++ in Chapter 5 to experiment with the AllegroGraph reasoning
and querying system.

TBD: more detail

22

5. RDFS++ and OWL

There are three standard versions of OWL: Lite, Description Logic (DL), and Full.
TBD: describe in detail...

DL strikes a good balance between expressiveness and computability. DL reasoners
are usually complete (that is, they provide all possible answers to queries). The prob-
lem in many real-world applications is the unpredictability of how long a query will
take to execute.

5.1. Properties Supported In RDFS++

There is an unofficial version of RDFS/OWL called RDFS++ that is a practical com-
promise between DL OWL and RDEFS inferencing. AllegroGraph supports the fol-
lowing predicates:

e rdf:type — discussed in Chapter 3

e rdf:property — discussed in Chapter 3

o rdfs:subClassOf — discussed in Chapter 4

e rdfs:range — discussed in Chapter 4

e rdfs:domain — discussed in Chapter 4

e rdfs:subPropertyOf — discussed in Chapter 4
e owl:sameAs

e owl:inverseOf

e owl:TransitiveProperty

We will now discuss owl:sameAs, owl:inverseOf, and owl: TransitiveProperty. TBD

23

5. RDFS++ and OWL
5.1.1. rdfs:subClassOf

TBD

5.1.2. rdfs:range

TBD

5.1.3. rdfs:domain

TBD

5.1.4. rdfs:subPropertyOf

TBD

5.1.5. owl:sameAs

TBD

5.1.6. owl:inverseOf

TBD

5.1.7. owl:TransitiveProperty

TBD

5.2. The SPARQL Query Language

SPARQL is a query language used to query RDF data stores. While SPARQL may
initially look like SQL, we will see that there are some important differences like
support for RDFS and OWL inferencing (see Chapter 7) and graph-based instead of
relational matching operations. We will cover the basics of SPARQL in this section

24

5.2. The SPARQL Query Language

and then see more examples in Chapter 7 when we learn about the AllegroGraph
query APIs.

We will use the N3 format RDF file test_data/news.n3 for examples. This file was
created automatically by spidering Reuters news stories on the news.yahoo.com web
site and automatically extracting named entities from the text of the articles. We will
see techniques for extracting named entities from text in Chapter 14 when I develop
utilities for using the Reuters Open Calais web services. In this chapter we use these
sample RDF files that I have created as input from another source.

You have already seen snippets of this file in Section 4.1 and I list the entire file here
for reference (edited to fit line width: you may find the file news.n3 easier to read if
you are at your computer and open the file in a text editor so you will not be limited
to what fits on a book page):

@prefix kb: <http://knowledgebooks.com/ontology#>
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

kb:containsCity rdfs:subPropertyOf kb:containsPlace
kb:containsCountry rdfs:subPropertyOf kb:containsPlace
kb:containsState rdfs:subPropertyOf kb:containsPlace

<http://yahoo.com/20080616/usa_flooding_dc_16 />
kb:containsCity "Burlington" , "Denver" ,
"St. Paul" ," Chicago" ,
"Quincy" , "CHICAGO"
"ITowa City"
kb:containsRegion "U.S. Midwest" , "Midwest" ;
kb:containsCountry "United States" , "Japan" ;
kb:containsState "Minnesota" , "Illinois" ,
"Mississippi" , "Iowa"
kb:containsOrganization "National Guard" ,
"U.S. Department of Agriculture" ,
"White House"
"Chicago Board of Trade"
"Department of Transportation" ;
kb:containsPerson "Dena Gray-Fisher"
"Donald Miller"
"Glenn Hollander" ,
"Rich Feltes" ,
"George W. Bush"
kb:containsIndustryTerm "food inflation" , "food" ,
"finance ministers"

25

5. RDFS++ and OWL

"Oil"

<http://yahoo.com/78325/ts_nm/usa_politics_dc_2 />

kb:containsCity "Washington" , "Baghdad" ,
"Arlington" , "Flint" ;
kb:containsCountry "United States" ,
"Afghanistan"
"Irag"
kb:containsState "Illinois" , "Virginia" ,
"Arizona" , "Michigan" ;
kb:containsOrganization "White House" ,
"Obama administration"
"Iragi government"
kb:containsPerson "David Petraeus" ,
"John McCain" ,
"Hoshiyar Zebari" ,
"Barack Obama" ,
"George W. Bush"
"Carly Fiorina"
kb:containsIndustryTerm "oil prices"

<http://yahoo.com/10944/ts_nm/worldleaders_dc_1 />

kb:containsCity "WASHINGTON"
kb:containsCountry "United States"™ , "Pakistan" ,
"Islamic Republic of Iran"
kb:containsState "Maryland" ;
kb:containsOrganization "University of Maryland"
"United Nations"
kb:containsPerson "Ban Ki-moon" , "Gordon Brown"
"Hu Jintao" , "George W. Bush"
"Pervez Musharraf" ,
"Vladimir Putin" ,
"Steven Kull"
"Mahmoud Ahmadinejad"

<http://yahoo.com/10622/global_economy_dc_4 />

26

kb:containsCity "Sao Paulo" , "Kuala Lumpur" ;
kb:containsRegion "Midwest" ;
kb:containsCountry "United States" , "Britain" ,
"Saudi Arabia" , "Spain" ,
"Italy" , India"
""France" , "Canada" ,
"Russia" , "Germany" , "China"
"Japan" , "South Korea" ;
kb:containsOrganization "Federal Reserve Bank"

14

14

5.2. The SPARQL Query Language

"European Union" ,
"European Central Bank" ,
"European Commission"
kb:containsPerson "Lee Myung-bak" , "Rajat Nag" ,
"Luiz Inacio Lula da Silva" ,
"Jeffrey Lacker"
kb:containsCompany "Development Bank Managing"
"Reuters"
"Richmond Federal Reserve Bank" ;
kb:containsIndustryTerm "central bank" , "food"
"energy costs"
"finance ministers"
"crude oil prices"
"oil prices" ,
"oil shock"
"food prices" ,
"Finance ministers"
"Oil prices" , "oil"

In the following examples, we will look at queries but not the results. Please be pa-
tient: these same queries are used in the embedded Java examples in the next section
so it makes sense to only list the query return values in one place. Besides that, you
will enjoy running the example programs yourself and experiment with modifying
the queries.

We will start with a simple SPARQL query for subjects (news article URLs) and ob-
jects (matching countries) with the value for the predicate equal to containsCountry:

SELECT ?subject ?object
WHERE {
?subject
http://knowledgebooks.com/ontology#containsCountry>
?object

Variables in queries start with a question mark character and can have any names.
We can make this query easier and reduce the chance of misspelling errors by using
a namespace prefix:

PREFIX kb: <http://knowledgebooks.com/ontology#>
SELECT ?subject ?object
WHERE {
?subject kb:containsCountry ?object

27

5. RDFS++ and OWL

We could have filtered on any other predicate, for instance containsPlace. Here
is another example using a match against a string literal to find all articles exactly
matching the text “Maryland.” The following queries were copied from Java source
files and were embedded as string literals so you will see quotation marks backslash
escaped in these examples. If you were entering these queries into a query form you
would not escape the quotation marks.

PREFIX kb: <http://knowledgebooks.com/ontology#>
SELECT ?subject
WHERE { ?subject kb:containsState \"Maryland\" . }

We can also match partial string literals against regular expressions:

PREFIX kb:
SELECT ?subject ?object
WHERE {
?subject
kb:containsOrganization
?object FILTER regex (?object, \"University\")

Prior to this last example query we only requested that the query return values for
subject and predicate for triples that matched the query. However, we might want
to return all triples whose subject (in this case a news article URI) is in one of the
matched triples. Note that there are two matching triples, each terminated with a
period:

PREFIX kb: <http://knowledgebooks.com/ontology#>
SELECT ?subject ?a_predicate ?an_object
WHERE {
?subject
kb:containsOrganization
?object FILTER regex (?object, \"University\")

?subject ?a_predicate 7an_object
}

DISTINCT

ORDER BY ?a_predicate ?an_object
LIMIT 10

OFFSET 5

When WHERE clauses contain more than one triple pattern to match, this is equiva-
lent to a Boolean “and” operation. The DISTINCT clause removes duplicate results.

28

5.2. The SPARQL Query Language

The ORDER BY clause sorts the output in alphabetical order: in this case first by
predicate (containsCity, containsCountry, etc.) and then by object. The LIMIT mod-
ifier limits the number of results returned and the OFFSET modifier sets the number
of matching results to skip.

We are done with our quick tutorial on using the SELECT query form. There are
three other query forms that I am not covering in this chapter:

e CONSTRUCT - returns a new RDF graph of query results
e ASK - returns Boolean true or false indicating if a query matches any triples

e DESCRIBE - returns a new RDF graph containing matched resources

TBD

29

5. RDFS++ and OWL

30

Part Il.

AllegroGraph Extended
Tutorial

31

6. AllegroGraph’s Extensions to
RDF

We saw in Chapter 3 that RDF triples contain three values: subject, predicate, and
object. AllegroGraph extends RDF adding two additional values:

1. graph-id — optional string to specify which graph the RDF triple belongs to
2. triple-id — unique triple ID

The subject, predicate, object, and graph value strings are uniquely stored in a
global string table (like the symbol table a compiler uses) so that triples can more
efficiently store indices rather than complete strings. Storing just a single copy of
each unique string also save memory and disk storage. Comparing string table indices
is also much faster than storing string values.

6.1. Examples Use Cases

In the following example we will extend the example started in Chapter 2 by adding
an additional triple specifying an optional graph ID value and the value for the RDF
data store:

(require :agraph)
(in-package :db.agraph.user)

(create-triple-store "/tmp/rdfstore_1")
;7 default data stoe is kept in xdbx
*db *

The value of *db* prints as:

#<DB.AGRAPH: : TRIPLE-DB /tmp/rdfstore_1, open @ #x11790d02>

After registering a namespace we add three triples. Unlike the examples in Chapter 2
we specify values for two optional parameters to function add-triple:

33

6. AllegroGraph’s Extensions to RDF

(register—-namespace "kb" "http://knowledgebooks.com/rdfs#")
(resource "http://demo_news/12931")
(defvar *demo-article* (resource "http://demo_news/12931"))

(add-triple xdemo-articlex !rdf:type 'kb:article :db xdbx :g !"r
(add-triple xdemo—-articlex !kb:containsPerson !"Barack Obama" :c
(add-triple *demo—-articlex !kb:processed !"yes" :db xdb*x :g !"wc

In addition to queries based on values of subject, predicate, and object we can also
filter results by specifying a value for the graph:

;5 query on optional graph value:
(print-triples (get-triples :g !"work-flow"))

producing the output:

<http://demo_news/12931>
<http://knowledgebooks.com/rdfs#processed>
"yeS"

The function add-triple returns as its value the newly created triple’s ID and has the
side effect of adding the triple to the currently opened data store. While it is not best
practices to use this unique internal AllegroGraph triple ID as a value referenced in
another triple, there may be reasons in an application to store the IDs of newly created
triples in order to be able to retrieve them from ID; for example:

TRIPLE-STORE-USER(15): (get-triple-by-id 3)
<12931 processed yes work—flow>

We have seen how to perform simple triple queries/lookups in this chapter and in 2.
In Chapter 7 we will see how to use the AllegroGraph APIs to perform SPARQL
queries like the examples in Section 5.2.

34

7. SPARQL Queries

TBD

35

7. SPARQL Queries

36

8. AllegroGraph Reasoning
System

TBD

37

8. AllegroGraph Reasoning System

38

9. AllegroGraph Prolog Interface

TBD

39

9. AllegroGraph Prolog Interface

40

Part lll.

Common Lisp Utilities for
Information Processing

41

10. Entity Extraction from Text

TBD

10.1. KnowledgeBooks.com Entity Extraction
Library

TBD: use a simplified version of my code, discuss APIs, etc.

10.2. Entity Extraction with AllegroGraph
Example

TBD: like the later Open Calais chapter, put entities in a data store, demo queries,
etc.

43

10. Entity Extraction from Text

44

11. Automatic Text Tagging

TBD

11.1. KnowledgeBooks.com Text Tagging Library

TBD: use a simplified version of my code, discuss APIs, etc.

11.2. Text Tagging with AllegroGraph Example

TBD: like the later Open Calais chapter, put entities in a data store, demo queries,
etc.

45

11. Automatic Text Tagging

46

12. Automatically Summarizing
Text

TBD

12.1. KnowledgeBooks.com Automatic
Summarization Library

TBD: use a simplified version of my code, discuss APIs, etc.

12.2. Automatic Summarization and
AllegroGraph Index/Search Example

TBD

47

12. Automatically Summarizing Text

48

Part IV.

AllegroGraph Application
Examples

49

13. Using Graphviz to Visualize
RDF Graphs

TBD

51

13. Using Graphviz to Visualize RDF Graphs

52

14. Using Open Calais with
AllegroGraph

The Open Calais web services are available for free use with some minor limitations.
This service is also available for a fee with additional functionality and guaranteed
service levels. We will use the free service in this chapter.

TBD: give a better plug for Reuters here, including a URL

You will need to apply for a free developers key. On my development systems I define
an environment variable for the value of my key using (the key shown is not a valid
key, by the way):

export OPEN_CALAIS_KEY=po2eqll2hkf985f3k

The example source files are found in:
e chapter_14_opencalais/
e chapter_14_opencalais/load.lisp — loads and runs the demo

e chapter_14_opencalais/opencalais-lib.lisp — performs web service calls to find
named entities in text

e chapter_14_opencalais/opencalais-data-store.lisp — maintains an RDF data store
for named entities

e chapter_14_opencalais/test-opencalais.lisp — demo test program

14.1. Open Calais Web Services Client

The Open Calais web services return RDF payloads serialized as XML data.
TBD: describe full schemas used

For our purposes, we will not use the returned XML data and instead parse the com-
ment block to extract named entities that Open Calais indentifies. There is a possibil-

53

14. Using Open Calais with AllegroGraph

ity in the future that the library in this section may need modification if the format of
this comment block changes (it has not changed in several years).

I will not list all of the code in opencalais-lib.lisp but we will look at some of it. I start
by defining two constant values, the first depends on your setting of the OPEN_CALAIS _KEY
environment variable:

(defvar smy-opencalais-keyx (sys::getenv "OPEN_CALAIS_KEY"))

(defvar *PARAMS=*
(concatenate ’'string
"¶msXML="
(MAKE-ESCAPED-STRING "<c:params ... >..... </c:params>")))

The web services client function is fairly trivial: we just need to make a RESTful
web services call and extract the text form the comment block, parsing out the named
entities and their values. Before we look at some code, we will jump ahead and look
at an example comment block; understanding the input data will make the code easier
to follow:

<!-—Relations: PersonCommunication, PersonPolitical, PersonTrave

Company: IBM, Pepsi

Country: France

Person: Hiliary Clinton, John Smith
ProvinceOrState: California-—-—>

We will use the net.aserve.client:do-http-request function to make the web service
call after setting up the RESTful arguments:

(defun entities-from-opencalais—-query (query
&aux url results indexl index2 lines tokens hash)
(setf hash (make-hash-table :test #’equal))
(setf url
(concatenate ’string
"http://api.opencalais.com/enlighten/calais.asmx/Enlighter

"licenseID="
smy—-opencalais-keyx*
"§content="
(MAKE-ESCAPED-STRING query)
PARAMS~))

(setf results (net.aserve.client:do-http-request url))

54

14.2. Storing Entity Data in an RDF Data Store

The value of results will be URL-encoded text and for our purposes there is no need
to decode the text returned from the web service call:

setqg indexl (search "terms of service.-->" results))
setg indexl (search "<!--" results :start2 indexl))

setq results (subseq results (+ indexl 7) index2))
setqg lines
(split—-sequence:split-sequence #\Newline results))
(dolist (line lines)
(setg indexl (search ": " line))
(1f indexl
(let ((key (subseg line 0 indexl))
(values (split-sequence:split-sequence ", " (subseq
(1f (not (string-equal "Relations" key))
(setf (gethash key hash) wvalues)))))

(
(
(setg index2 (search "—-->" results :start2 indexl))
(
(

(maphash

#’ (lambda (key wval) (format t "key: 7S wval: "S7%" key val))
hash)
hash)

Before using this utility function in the next section to fetch data for an RDF data
store we will look at a simple test:

(entities—-from-opencalais—query
"Senator Hiliary Clinton spoke with the president
of France. Clinton and John Smith talked on
the aiplane going to California. IBM and Pepsi
contributed to Clinton’s campaign.")

The debug printout in this call is:

key: "Country" wval: ("France")

key: "Person" wval: ("Hiliary Clinton" "John Smith")
key: "Company" wval: ("IBM" "Pepsi")

key: "ProvinceOrState" wval: ("California")

14.2. Storing Entity Data in an RDF Data Store

We will use the utilities developed in the last section for using the Open Calais web
services in this section to populate an RDF data store. You can find the utilities

55

14. Using Open Calais with AllegroGraph

developed in this section in the source file opencalais-data-store.lisp. We start by
making sure that the AllegroGraph libraries are loaded and we define a namespace
that we will use for examples in the rest of this chapter:

;7 Use the opencalais-lib.lisp utilities to create
;; an RDF data store. Assume that a AG RDF
;; repository is open.

(require :agraph)
(in-package :db.agraph.user)

(register—-namespace
" kb "
"http:/knowledgebooks.com/rdfs#")

To avoid defining a global variable for a hash table we define one locally inside a
closure that also defines the only function that needs read access to this hash table:

(let ((hash (make-hash-table :test #’equal)))
(setf (gethash "Country" hash) !'kb:containsCountry)
(setf (gethash "Person" hash) !kb:containsPerson)
(setf (gethash "Company" hash) !kb:containsCompany)
(setf (gethash "ProvinceOrState" hash)
'kb:containsState)
(setf (gethash "Product" hash) !'kb:containsProduct)
;; utility function for getting a URI for a
;; predicate name:
(defun get-rdf-predicate-from-entity-type (entity-type)
(let ((et (gethash entity-type hash)))
(if (not et)
(progn
;7 Just use a string literal if there is
;; no entry in the hash table:
(setf et entity-type)
(format t
"Warning: entity-type 7S not defined
in opencalais-data-store.lisp™%"
entity-type)))
et)))

Function get-rdf-predicate-from-entity-type is used to map string literals to specific
predicates defined in the knowledgebooks.com namespace. The following function is
the utility for processing the text from documents and generating multiple triples that
all have their subject equal to the value of the unique URI for the original document.

56

14.3. Testing the Open Calais Demo System

(defun add-entities-to-rdf-store (subject-uri text)
"subject-uri if the subject for triples that this
function defines"
(maphash
#’ (lambda (key val)
(dolist (entity-val wval)
(add-triple
subject-uri
(get-rdf-predicate-from-entity-type key)
(literal entity-val))))
(entities—from-opencalais—query text)))

If documents are not plain text (for example a word processing file or a HTML web
page) then applications using the utility code developed in this chapter need to extract
plain text. The code in this section is intended to give you ideas for your own appli-
cations; you would at least substitute your own namespace(s) for your application.

14.3. Testing the Open Calais Demo System
The source file test-opencalais.lisp contains the examples for this section:

(require :agraph)
(in-package :db.agraph.user)

(create-triple-store "/tmp/rdfstore_1")

We start by using the utility function defined in the last section to find all named
entities in sample text and create triples in the data store:

(add-entities-to-rdf-store
!<http://newsdemo.com/1234>
"Senator Hiliary Clinton spoke with the president
of France. Clinton and John Smith talked on the
aiplane going to California. IBM and Pepsi
contributed to Clinton’s campaign.")

We can print all triples in the data store:

(print-triples (get-triples-list) :format :concise)

57

14. Using Open Calais with AllegroGraph

and output is:

<1l: http://newsdemo.com/1234 kb:containsCountry France>
<2: http://newsdemo.com/1234 kb:containsPerson

Hiliary Clinton>
<3: http://newsdemo.com/1234 kb:containsPerson

John Smith>
<4: http://newsdemo.com/1234 kb:containsCompany IBM>
<5: http://newsdemo.com/1234 kb:containsCompany Pepsi>
<6: http://newsdemo.com/1234 kb:containsState California>

This example showed just adding triples generated from a single document. If a large
number of documents are processed then queries like the following might be useful:

(print-triples

(get-triples-list
:p (get-rdf-predicate-from-entity-type "Company")
:0 (literal "Pepsi"))

:format :concise)

producing this output:
<5: http://newsdemo.com/1234 kb:containsCompany Pepsi>

Here we identify all documents that mention a specific company.

14.4. Open Calais Wrap Up

Since AllegroGraph supports indexing and search of any text fields in triples, the
combination of using triples to store specific entities in a large document collection
with full search, AllegroGraph can be a effective tool to mange large document repos-
itories.

“Documents” can be any source of text identified with a unique URI: web pages,
word processing documents, blog entries, etc.

We will use the utilities developed in this chapter when we design and build a web
portal in Chapters 16, 17, and 18.

58

15. Exporting SPARQL Query
Results

TBD

15.1. Exporting to OpenOffice.org Spreadsheets

TBD

15.2. Exporting to PostgreSQL Databases

TBD

59

15. Exporting SPARQL Query Results

60

Part V.

Sample Application:
Semantic Web Enabled Web
Site

61

16. Requirements and Design of
the Semantic Web Portal Web
Application

The example application developed in this part of the book is a Semantic Web Portal
Web Application with the following features:

e Indexes content from the web and local text documents.

e Web application interface for search. Search results include links to other sim-
ilar documents that are associated by category, people and places discussed in
the documents, and clustered using K-Means.

e Repository and indexes are also searchable as a SPARQL endpoint.

TBD

63

16. Requirements and Design of the Semantic Web Portal Web Application

64

17. Web Application Back End
Implementation

TBD

65

17. Web Application Back End Implementation

66

18. Web Interface for the
Semantic Web Portal

TBD

18.1. Introduction to AllegroServe

TBD

18.2. Introduction to Web Actions

TBD

18.3. Dojo and Javascript for the Web Interface

TBD

18.4. Web Application Implementation

TBD

67

18. Web Interface for the Semantic Web Portal

68

Biliography

69

